Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Uris Ros is active.

Publication


Featured researches published by Uris Ros.


The Journal of Membrane Biology | 2015

More Than a Pore: The Interplay of Pore-Forming Proteins and Lipid Membranes

Uris Ros; Ana J. García-Sáez

Pore-forming proteins (PFPs) punch holes in their target cell membrane to alter their permeability. Permeabilization of lipid membranes by PFPs has received special attention to study the basic molecular mechanisms of protein insertion into membranes and the development of biotechnological tools. PFPs act through a general multi-step mechanism that involves (i) membrane partitioning, (ii) insertion into the hydrophobic core of the bilayer, (iii) oligomerization, and (iv) pore formation. Interestingly, PFPs and membranes show a dynamic interplay. As PFPs are usually produced as soluble proteins, they require a large conformational change for membrane insertion. Moreover, membrane structure is modified upon PFPs insertion. In this context, the toroidal pore model has been proposed to describe a pore architecture in which not only protein molecules but also lipids are directly involved in the structure. Here, we discuss how PFPs and lipids cooperate and remodel each other to achieve pore formation, and explore new evidences of protein-lipid pore structures.


Journal of Biological Chemistry | 2015

Toxicity of an α-Pore-forming Toxin Depends on the Assembly Mechanism on the Target Membrane as Revealed by Single Molecule Imaging

Yamuna Devi Subburaj; Uris Ros; Eduard Hermann; Rudi Tong; Ana J. García-Sáez

Background: Equinatoxin II is a model α-pore-forming toxin that kills cells by porating the host plasma membrane. Results: On the membrane, equinatoxin II does not adopt a unique oligomeric state, but assembles into multiple coexisting species related to toxicity. Conclusion: Toxicity of Equinatoxin II depends on its assembly mechanism. Significance: A new molecular mechanism is proposed for α-pore-forming toxins action. α-Pore-forming toxins (α-PFTs) are ubiquitous defense tools that kill cells by opening pores in the target cell membrane. Despite their relevance in host/pathogen interactions, very little is known about the pore stoichiometry and assembly pathway leading to membrane permeabilization. Equinatoxin II (EqtII) is a model α-PFT from sea anemone that oligomerizes and forms pores in sphingomyelin-containing membranes. Here, we determined the spatiotemporal organization of EqtII in living cells by single molecule imaging. Surprisingly, we found that on the cell surface EqtII did not organize into a unique oligomeric form. Instead, it existed as a mixture of oligomeric species mostly including monomers, dimers, tetramers, and hexamers. Mathematical modeling based on our data supported a new model in which toxin clustering happened in seconds and proceeded via condensation of EqtII dimer units formed upon monomer association. Furthermore, altering the pathway of EqtII assembly strongly affected its toxic activity, which highlights the relevance of the assembly mechanism on toxicity.


Biochimica et Biophysica Acta | 2016

Assembling the puzzle: Oligomerization of α-pore forming proteins in membranes.

Uris Ros; Ana J. García-Sáez

Pore forming proteins (PFPs) share the ability of creating pores that allow the passage of ions, proteins or other constituents through a wide variety of target membranes, ranging from bacteria to humans. They often cause cell death, as pore formation disrupts the membrane permeability barrier required for maintaining cell homeostasis. The organization into supramolecular complexes or oligomers that pierce the membrane is a common feature of PFPs. However, the molecular pathway of self-assembly and pore opening remains unclear. Here, we review the most recent discoveries in the mechanism of membrane oligomerization and pore formation of a subset of PFPs, the α-PFPs, whose pore-forming domains are formed by helical segments. Only now we are starting to grasp the molecular details of their function, mainly thanks to the introduction of single molecule microscopy and nanoscopy techniques. This article is part of a Special Issue entitled: Pore-forming toxins edited by Mauro Dalla Serra and Franco Gambale.


Biochimica et Biophysica Acta | 2013

The sticholysin family of pore-forming toxins induces the mixing of lipids in membrane domains.

Uris Ros; Michelle A. Edwards; Raquel F. Epand; María E. Lanio; Shirley Schreier; Christopher M. Yip; Carlos Alvarez; Richard M. Epand

Sticholysins (Sts) I and II (StI/II) are pore-forming toxins (PFTs) produced by the Caribbean Sea anemone Stichodactyla helianthus belonging to the actinoporin family, a unique class of eukaryotic PFTs exclusively found in sea anemones. The role of lipid phase co-existence in the mechanism of the action of membranolytic proteins and peptides is not clearly understood. As for actinoporins, it has been proposed that phase separation promotes pore forming activity. However little is known about the effect of sticholysins on the phase separation of lipids in membranes. To gain insight into the mechanism of action of sticholysins, we evaluated the effect of these proteins on lipid segregation using differential scanning calorimetry (DSC) and atomic force microscopy (AFM). New evidence was obtained reflecting that these proteins reduce line tension in the membrane by promoting lipid mixing. In terms of the relevance for the mechanism of action of actinoporins, we hypothesize that expanding lipid disordered phases into lipid ordered phases decreases the lipid packing at the borders of the lipid raft, turning it into a more suitable environment for N-terminal insertion and pore formation.


Journal of Biosciences | 2011

The membranotropic activity of N-terminal peptides from the pore-forming proteins sticholysin I and II is modulated by hydrophobic and electrostatic interactions as well as lipid composition

Uris Ros; Lohans Pedrera; Daylin Diaz; Juan C. de Karam; Tatiane P. Sudbrack; Pedro A. Valiente; Diana Martinez; Eduardo Maffud Cilli; Fabiola Pazos; Rosangela Itri; María E. Lanio; Shirley Schreier; Carlos Alvarez

The sea anemone Stichodactyla helianthus produces two pore-forming proteins, sticholysins I and II (St I and St II). Despite their high identity (93%), these toxins exhibit differences in hemolytic activity that can be related to those found in their N-terminal. To clarify the contribution of the N-terminal amino acid residues to the activity of the toxins, we synthesized peptides spanning residues 1–31 of St I (StI1-31) or 1–30 of St II (StII1-30) and demonstrated that StII1-30 promotes erythrocyte lysis to a higher extent than StI1-31. For a better understanding of the molecular mechanism underlying the peptide activity, here we studied their binding to lipid monolayers and pemeabilizing activity in liposomes. For this, we examined the effect on peptide membranotropic activity of including phospatidic acid and cholesterol in a lipid mixture of phosphatidylcholine and sphingomyelin. The results suggest the importance of continuity of the 1–10 hydrophobic sequence in StII1-30 for displaying higher binding and activity, in spite of both peptides’ abilities to form pores in giant unilamellar vesicles. Thus, the different peptide membranotropic action is explained in terms of the differences in hydrophobic and electrostatic peptide properties as well as the enhancing role of membrane inhomogeneities.


Langmuir | 2015

The Presence of Sterols Favors Sticholysin I-Membrane Association and Pore Formation Regardless of Their Ability to Form Laterally Segregated Domains

Lohans Pedrera; Andreza B. Gomide; Rafael E. Sánchez; Uris Ros; Natalia Wilke; Fabiola Pazos; María E. Lanio; Rosangela Itri; Maria Laura Fanani; Carlos Alvarez

Sticholysin I (St I) is a pore-forming toxin (PFT) produced by the Caribbean Sea anemone Stichodactyla helianthus belonging to the actinoporin protein family, a unique class of eukaryotic PFT. As for actinoporins, it has been proposed that the presence of cholesterol (Chol) and the coexistence of lipid phases increase binding to the target membrane and pore-forming ability. However, little is known about the role of membrane structure and dynamics (phase state, fluidity, and the presence of lipid domains) on the activity of actinoporins or which regions of the membrane are the most favorable for protein insertion, oligomerization, and eventually pore formation. To gain insight into the role of membrane properties on the functional activity of St I, we studied its binding to monolayers and vesicles of phosphatidylcholine (PC), sphingomyelin (SM), and sterols inducing (ergosterol -Erg and cholesterol -Chol) or not (cholestenone - Cln) membrane phase segregation in liquid ordered (Lo) and liquid disordered (Ld) domains. This study revealed that St I binds and permeabilizes with higher efficiency sterol-containing membranes independently of their ability to form domains. We discuss the results in terms of the relevance of different membrane properties for the actinoporins mechanism of action, namely, molecular heterogeneity, specially potentiated in membranes with sterols inducers of phase separation (Chol or Erg) or Cln, a sterol noninducer of phase separation but with a high propensity to induce nonlamellar phase. The role of the Ld phase is pointed out as the most suitable platform for pore formation. In this regard, such regions in Chol-containing membranes seem to be the most favored due to its increased fluidity; this property promotes toxin insertion, diffusion, and oligomerization leading to pore formation.


Cell Reports | 2017

Necroptosis Execution Is Mediated by Plasma Membrane Nanopores Independent of Calcium

Uris Ros; Aida Peña-Blanco; Kay Hänggi; Ulrich Kunzendorf; Stefan Krautwald; W. Wei-Lynn Wong; Ana J. García-Sáez

Summary Necroptosis is a form of regulated necrosis that results in cell death and content release after plasma membrane permeabilization. However, little is known about the molecular events responsible for the disruption of the plasma membrane. Here, we find that early increase in cytosolic calcium in TNF-induced necroptosis is mediated by treatment with a Smac mimetic via the TNF/RIP1/TAK1 survival pathway. This does not require the activation of the necrosome and is dispensable for necroptosis. Necroptosis induced by the activation of TLR3/4 pathways does not trigger early calcium flux. We also demonstrate that necroptotic plasma membrane rupture is mediated by osmotic forces and membrane pores around 4 nm in diameter. This late permeabilization step represents a hallmark in necroptosis execution that is cell and treatment independent and requires the RIP1/RIP3/MLKL core. In support of this, treatment with osmoprotectants reduces cell damage in an in vivo necroptosis model of ischemia-reperfusion injury.


Protein Science | 2017

Disrupting a key hydrophobic pair in the oligomerization interface of the actinoporins impairs their pore-forming activity.

Haydeé Mesa-Galloso; Karelia H. Delgado-Magnero; Sheila Cabezas; Aracelys López-Castilla; Jorge E. Hernández-González; Lohans Pedrera; Carlos Alvarez; D. Peter Tieleman; Ana J. García-Sáez; María E. Lanio; Uris Ros; Pedro A. Valiente

Crystallographic data of the dimeric and octameric forms of fragaceatoxin C (FraC) suggested the key role of a small hydrophobic protein–protein interaction surface for actinoporins oligomerization and pore formation in membranes. However, site‐directed mutagenesis studies supporting this hypothesis for others actinoporins are still lacking. Here, we demonstrate that disrupting the key hydrophobic interaction between V60 and F163 (FraC numbering scheme) in the oligomerization interface of FraC, equinatoxin II (EqtII), and sticholysin II (StII) impairs the pore formation activity of these proteins. Our results allow for the extension of the importance of FraC protein–protein interactions in the stabilization of the oligomeric intermediates of StII and EqtII pointing out that all of these proteins follow a similar pathway of membrane disruption. These findings support the hybrid pore proposal as the universal model of actinoporins pore formation. Moreover, we reinforce the relevance of dimer formation, which appears to be a functional intermediate in the assembly pathway of some different pore‐forming proteins.


Biochimica et Biophysica Acta | 2017

Damage of eukaryotic cells by the pore-forming toxin sticholysin II: Consequences of the potassium efflux.

Sheila Cabezas; Sylvia Ho; Uris Ros; María E. Lanio; Carlos Alvarez; F. Gisou van der Goot

Pore-forming toxins (PFTs) form holes in membranes causing one of the most catastrophic damages to a target cell. Target organisms have evolved a regulated response against PFTs damage including cell membrane repair. This ability of cells strongly depends on the toxin concentration and the properties of the pores. It has been hypothesized that there is an inverse correlation between the size of the pores and the time required to repair the membrane, which has been for long a non-intuitive concept and far to be completely understood. Moreover, there is a lack of information about how cells react to the injury triggered by eukaryotic PFTs. Here, we investigated some molecular events related with eukaryotic cells response against the membrane damage caused by sticholysin II (StII), a eukaryotic PFT produced by a sea anemone. We evaluated the change in the cytoplasmic potassium, identified the main MAPK pathways activated after pore-formation by StII, and compared its effect with those from two well-studied bacterial PFTs: aerolysin and listeriolysin O (LLO). Strikingly, we found that membrane recovery upon StII damage takes place in a time scale similar to LLO in spite of the fact that they form pores by far different in size. Furthermore, our data support a common role of the potassium ion, as well as MAPKs in the mechanism that cells use to cope with these toxins injury.


Biopolymers | 2013

Functional and Topological Studies with Trp-Containing Analogs of the Peptide StII(1-30) Derived From the N-Terminus of the Pore Forming Toxin Sticholysin II: Contribution to Understand its Orientation in Membrane

Uris Ros; Ana Lucia C. F. Souto; Felipe J. de Oliveira; Edson Crusca; Fabiola Pazos; Eduardo Maffud Cilli; María E. Lanio; Shirley Schreier; Carlos Alvarez

Sticholysin II (St II) is the most potent cytolysin produced by the sea anemone Stichodactyla helianthus, exerting hemolytic activity via pore formation in membranes. The toxins N-terminus contains an amphipathic α-helix that is very likely involved in pore formation. We have previously demonstrated that the synthetic peptide StII(1-30) encompassing the 1-30 segment of St II forms pores of similar radius to that of the protein (around 1 nm), being a good model of toxin functionality. Here we have studied the functional and conformational properties of fluorescent analogs of StII(1-30) in lipid membranes. The analogs were obtained by replacing Leu residues at positions 2, 12, 17, and 24 with the intrinsically fluorescent amino acid Trp (StII(1-30L2W), StII(1-30L12W), StII(1-30L17W), or StII(1-30L24W), respectively). The exchange by Trp did not significantly modify the activity and conformation of the parent peptide. The blue-shift and intensity enhancement of fluorescence in the presence of membrane indicated that Trp at position 2 is more deeply buried in the hydrophobic region of the bilayer. These experiments, as well as assays with water-soluble or spin-labeled lipid-soluble fluorescence quenchers suggest an orientation of StII(1-30) with its N-terminus oriented towards the hydrophobic core of the bilayer while the rest of the peptide is more exposed to the aqueous environment, as hypothesized for sticholysins.

Collaboration


Dive into the Uris Ros's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge