Ursula Bommhardt
Otto-von-Guericke University Magdeburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ursula Bommhardt.
PLOS Computational Biology | 2005
Julio Saez-Rodriguez; Luca Simeoni; Jonathan A. Lindquist; Rebecca Hemenway; Ursula Bommhardt; Boerge Arndt; Utz-Uwe Haus; Robert Weismantel; Ernst Dieter Gilles; Steffen Klamt; Burkhart Schraven
Cellular decisions are determined by complex molecular interaction networks. Large-scale signaling networks are currently being reconstructed, but the kinetic parameters and quantitative data that would allow for dynamic modeling are still scarce. Therefore, computational studies based upon the structure of these networks are of great interest. Here, a methodology relying on a logical formalism is applied to the functional analysis of the complex signaling network governing the activation of T cells via the T cell receptor, the CD4/CD8 co-receptors, and the accessory signaling receptor CD28. Our large-scale Boolean model, which comprises 94 nodes and 123 interactions and is based upon well-established qualitative knowledge from primary T cells, reveals important structural features (e.g., feedback loops and network-wide dependencies) and recapitulates the global behavior of this network for an array of published data on T cell activation in wild-type and knock-out conditions. More importantly, the model predicted unexpected signaling events after antibody-mediated perturbation of CD28 and after genetic knockout of the kinase Fyn that were subsequently experimentally validated. Finally, we show that the logical model reveals key elements and potential failure modes in network functioning and provides candidates for missing links. In summary, our large-scale logical model for T cell activation proved to be a promising in silico tool, and it inspires immunologists to ask new questions. We think that it holds valuable potential in foreseeing the effects of drugs and network modifications.
Journal of Experimental Medicine | 2011
Sankar Bhattacharyya; Jolly Deb; Amiya K. Patra; Duong Anh Thuy Pham; Wen Chen; Martin Vaeth; Friederike Berberich-Siebelt; Stefan Klein-Hessling; Edward D. Lamperti; Kurt Reifenberg; Julia Jellusova; Astrid Schweizer; Lars Nitschke; Ellen Leich; Andreas Rosenwald; Cornelia Brunner; Swen Engelmann; Ursula Bommhardt; Andris Avots; Martin Müller; Eisaku Kondo; Edgar Serfling
Mouse B cells lacking NFATc1 exhibit defective proliferation, survival, isotype class switching, cytokine production, and T cell help.
Journal of Immunology | 2003
Shin-Young Na; Amiya K. Patra; Yvonne Scheuring; Alexander Marx; Mauro Tolaini; Dimitris Kioussis; Brian Hemmings; Thomas Hünig; Ursula Bommhardt
Protein kinase B (PKB), a serine threonine kinase is critically involved in cellular proliferation and survival. To characterize its role in T cell development in vivo, we have analyzed transgenic mice that express a membrane-targeted constitutively active version of PKB (myr PKB) in thymocytes and peripheral T cells. We report that myr PKB renders proliferative responses of thymocytes more sensitive to TCR signals by increased and sustained activation of Src kinase Lck and the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway. In addition, the proliferative response of myr PKB T cells is relatively independent of calcium mobilization and calcineurin activity. We also find that myr PKB enhances phosphorylation of glycogen synthase kinase 3, a negative regulator of NFAT and T cell activation, and the recruitment of the adapter protein Cbl-c. Interestingly, we demonstrate that upon TCR/CD3 stimulation of wild-type T cells PKB is translocated into lipid rafts, adding a new role for PKB in TCR-initiated signalosome formation in T cell activation. Localization of transgenic PKB in lipid rafts could contribute to the higher TCR sensitivity of myr PKB thymocytes which is reflected in an increase in positive selection toward the CD4 lineage and variable effects on negative selection depending on the model system analyzed. Thus, our observations clearly indicate a cross-talk between PKB and important signaling molecules downstream of TCR that modulate the thresholds of thymocyte selection and T cell activation.
Journal of Immunology | 2000
Ursula Bommhardt; Yvonne Scheuring; Chrisitan Bickel; Rose Zamoyska; Thomas Hünig
CD4+CD8+ thymocytes are either positively selected and subsequently mature to CD4 single positive (SP) or CD8 SP T cells, or they die by apoptosis due to neglect or negative selection. This clonal selection is essential for establishing a functional self-restricted T cell repertoire. Intracellular signals through the three known mitogen-activated protein (MAP) kinase pathways have been shown to selectively guide positive or negative selection. Whereas the c-Jun N-terminal kinase and p38 MAP kinase regulate negative selection of thymocytes, the extracellular signal-regulated kinase (ERK) pathway is required for positive selection and T cell lineage commitment. In this paper, we show that the MAP/ERK kinase (MEK)-ERK pathway is also involved in negative selection. Thymocytes from newborn TCR transgenic mice were cultured with TCR/CD3ε-specific Abs or TCR-specific agonist peptides to induce negative selection. In the presence of the MEK-specific pharmacological inhibitors PD98059 or UO126, cell recovery was enhanced and deletion of DP thymocytes was drastically reduced. Furthermore, development of CD4 SP T cells was blocked, but differentiation of mature CD8 SP T cells proceeded in the presence of agonist peptides when MEK activity was blocked. Thus, our data indicate that the outcome between positively and negatively selecting signals is critically dependent on MEK activity.
Molecular and Cellular Endocrinology | 2015
Yasaman Mirdamadi; Anja Thielitz; Antje Wiede; Alexander Goihl; Eleni Papakonstantinou; Roland Hartig; Christos C. Zouboulis; Dirk Reinhold; Luca Simeoni; Ursula Bommhardt; Sven R. Quist; Harald Gollnick
A recent hypothesis suggests that a high glycaemic load diet-associated increase of insulin-like growth factor-1 (IGF-1) and insulin may promote acne by reducing nuclear localization of the forkhead box-O1 (FoxO1) transcription factor via activation of the phosphoinositide-3-kinase (PI3K)/Akt pathway. Using SZ95 sebocytes as a model, we investigated the effect of the most important insulinotropic western dietary factors, IGF-1 and insulin on acne. SZ95 sebocytes were stimulated with different concentrations of IGF-1 and insulin (0.001, 0.01, 0.1 and 1 μM) for 15 to 120 min ± PI3K inhibitor LY294002 (50 μM). Cytoplasmic and nuclear protein expression of p-Akt and p-FoxO1 as well as FoxO transcriptional activity was analysed. In addition, the proliferation and differentiation of sebocytes and their TLR2/4 expression were determined. We found that high concentrations of IGF-1 and insulin differentially stimulate the PI3K/Akt/FoxO1 pathway by an early up-regulation of cytoplasmic p-Akt and delayed up-regulation of p-FoxO1 resulting in FoxO1 shift to the cytoplasm and the reduction of FoxO transcriptional activity, physiological serum concentration had no effect. IGF-1 at concentrations of 0.1 and 1 μM significantly reduced proliferation but increased differentiation of sebocytes to a greater extent than insulin (0.1 and 1 μM), but up-regulated TLR2/4 expression to comparable extent. These data provide the first in vitro evidence that FoxO1 principally might be involved in the regulation of growth-factor-stimulatory effects on sebaceous lipogenesis and inflammation in the pathological condition of acne. However, the in vivo significance under physiological conditions remains to be elucidated.
Nature Immunology | 2013
Amiya K. Patra; Andris Avots; René P. Zahedi; Thomas Schüler; Albert Sickmann; Ursula Bommhardt; Edgar Serfling
Interleukin 7 (IL-7) has a critical role in the development of early CD4−CD8− double-negative (DN) thymocytes. Although the transcription factor STAT5 is an important component of IL-7 signaling, differences in the phenotypes of mice deficient in STAT5, IL-7, IL-7 receptor alpha (IL-7rα) or the kinase Jak3 suggest the existence of STAT5-independent IL-7 signaling. Here we found that IL-7–Jak3 signals activated the transcription factor NFATc1 in DN thymocytes by phosphorylating Tyr371 in the regulatory region of NFATc1. This NFAT-activation pathway was critical for the survival and development of DN thymocytes, as deficiency in NFATc1 blocked thymocyte development at the DN1 stage, leading to T cell lymphopenia. In addition, our results demonstrated a cooperative function for NFATc1 and STAT5 in guiding thymocyte development in response to IL-7 signals.
European Journal of Immunology | 2007
Guillemette X. Masse; Erwan Corcuff; Hélène Decaluwe; Ursula Bommhardt; Olivier Lantz; Jan Buer; James P. Di Santo
Cytokines signaling through receptors sharing the common γ chain (γc), including IL‐2, IL‐4, IL‐7, IL‐9, IL‐15 and IL‐21, are critical for the generation and peripheral homeostasis of B, T and NK cells. To identify unique or redundant roles for γc cytokines in naive CD4+ T cells, we compared monoclonal populations of CD4+ T cells from TCR‐Tg mice that were γ c+ , γ c– , CD127–/– or CD122–/–. We found that γ c– naive CD4+ T cells failed to accumulate in the peripheral lymphoid organs and the few remaining cells were characterized by small size, decreased expression of MHC class I and enhanced apoptosis. By over‐expressing human Bcl‐2, peripheral naive CD4+ T cells that lack γc could be rescued. Bcl‐2+ γ c– CD4+ T cells demonstrated enhanced survival characteristics in vivo and in vitro, and could proliferate normally in vitro in response to antigen. Nevertheless, Bcl‐2+ γ c– CD4+ T cells remained small in size, and this phenotype was not corrected by enforced expression of an activated protein kinase B. We conclude that γc cytokines (primarily but not exclusively IL‐7) provide Bcl‐2‐dependent as well as Bcl‐2‐independent signals to maintain the phenotype and homeostasis of the peripheral naive CD4+ T cell pool.
Journal of Immunology | 2006
Amiya K. Patra; Thomas Drewes; Swen Engelmann; Sergei Chuvpilo; Hiroyuki Kishi; Thomas Hünig; Edgar Serfling; Ursula Bommhardt
Protein kinase B (PKB), an Ag receptor activated serine-threonine kinase, controls various cellular processes including proliferation and survival. However, PKB function in thymocyte development is still unclear. We report PKB as an important negative regulator of the calcineurin (CN)-regulated transcription factor NFAT in early T cell differentiation. Expression of a hyperactive version of CN induces a profound block at the CD25+CD44− double-negative (DN) 3 stage of T cell development. We correlate this arrest with up-regulation of Bcl-2, CD2, CD5, and CD27 proteins and constitutive activation of NFAT but a severe impairment of Rag1, Rag2, and intracellular TCR-β as well as intracellular TCR-γδ protein expression. Intriguingly, simultaneous expression of active myristoylated PKB inhibits nuclear NFAT activity, restores Rag activity, and enables DN3 cells to undergo normal differentiation and expansion. A correlation between the loss of NFAT activity and Rag1 and Rag2 expression is also found in myristoylated PKB-induced CD4+ lymphoma cells. Furthermore, ectopic expression of NFAT inhibits Rag2 promoter activity in EL4 cells, and in vivo binding of NFATc1 to the Rag1 and Rag2 promoter and cis-acting transcription regulatory elements is verified by chromatin immunoprecipitation analysis. The regulation of CN/NFAT signaling by PKB may thus control receptor regulated changes in Rag expression and constitute a signaling pathway important for differentiation processes in the thymus and periphery.
American Journal of Pathology | 2009
Khuloud Bajbouj; Angela Poehlmann; Doerthe Kuester; Thomas Drewes; Kathrin Haase; Roland Hartig; Anne Teller; Stefanie Kliche; Diana Walluscheck; Jelena Ivanovska; Saritha Chakilam; Annika Ulitzsch; Ursula Bommhardt; Martin Leverkus; Albert Roessner; Regine Schneider-Stock
Death-associated protein kinase (DAPK) is a serine/threonine kinase that contributes to pro-apoptotic signaling on cytokine exposure. The role of DAPK in macrophage-associated tumor cell death is currently unknown. Recently, we suggested a new function for DAPK in the induction of apoptosis during the interaction between colorectal tumor cells and tumor-associated macrophages. Using a cell-culture model with conditioned supernatants of differentiated/activated macrophages (U937) and human HCT116 colorectal tumor cells, we replicated DAPK-associated tumor cell death; this model likely reflects the in vivo tumor setting. In this study, we show that tumor necrosis factor-alpha exposure under conditions of macrophage activation induced DAPK-dependent apoptosis in the colorectal tumor cell line HCT116. Simultaneously, early phosphorylation of p38 mitogen-activated protein kinase (phospho-p38) was observed. We identified the phospho-p38 mitogen-activated protein kinase as a novel interacting protein of DAPK in tumor necrosis factor-alpha-induced apoptosis. The general relevance of this interaction was verified in two colorectal cell lines without functional p53 (ie, HCT116 p53(-/-) and HT29 mutant) and in human colon cancer and ulcerative colitis tissues. Supernatants of freshly isolated human macrophages were also able to induce DAPK and phospho-p38. Our findings highlight the mechanisms that underlie DAPK regulation in tumor cell death evoked by immune cells.
Journal of Immunology | 2008
Isabelle Bekeredjian-Ding; Anne Doster; Martin Schiller; Petra Heyder; Hanns-Martin Lorenz; Burkhart Schraven; Ursula Bommhardt; Klaus Heeg
In the past, ZAP70 was considered a T cell-specific kinase, and its aberrant expression in B-CLL cells was interpreted as a sign of malignant transformation and dedifferentiation. It was only recently that ZAP70 was detected in normal human B cells. In this study, we show that TLR9-activated B cells resemble B-cell chronic lymphocytic leukemia cells with regard to CD5, CD23, CD25, and heat shock protein 90 expression. Furthermore, stimulatory CpG and GpC DNA oligonucleotides target CD27+IgM+ and CD27−IgM+ B cells (but not IgM− B cells) and enhance ZAP70 expression predominantly in the IgM+CD27+ B cell subset. ZAP70 is induced via activation of TLR-7 or -9 in a MyD88-dependent manner, depends on protein kinase B (PKB)/mammalian target of rapamycin signaling and is rapamycin sensitive. Furthermore, ZAP70 expression levels correlate with induction of cyclin A2, prolonged B cell proliferation, and sustained induction of PKB. These events are not observed upon CD40 ligation. However, this deficit can be overcome by the expression of constitutively active PKB, given that CD40 ligation of PKB-transgenic B cells induces B cell proliferation and ZAP70 expression. These results highlight a major difference between CD40- and TLR-7/9-mediated B cell activation and suggest that ZAP70 expression levels in B cells give an estimate of the proliferative potential and the associated PKB availability.