Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Usman Yaqoob is active.

Publication


Featured researches published by Usman Yaqoob.


Journal of Clinical Investigation | 2010

Neuropilin-1 promotes cirrhosis of the rodent and human liver by enhancing PDGF/TGF-β signaling in hepatic stellate cells

Sheng Cao; Usman Yaqoob; Amitava Das; Uday Shergill; Kumaravelu Jagavelu; Robert C. Huebert; Chittaranjan Routray; Soha Saoud Abdelmoneim; Meher M. Vasdev; Edward B. Leof; Michael R. Charlton; Ryan J. Watts; Debabrata Mukhopadhyay; Vijay H. Shah

PDGF-dependent hepatic stellate cell (HSC) recruitment is an essential step in liver fibrosis and the sinusoidal vascular changes that accompany this process. However, the mechanisms that regulate PDGF signaling remain incompletely defined. Here, we found that in two rat models of liver fibrosis, the axonal guidance molecule neuropilin-1 (NRP-1) was upregulated in activated HSCs, which exhibit the highly motile myofibroblast phenotype. Additionally, NRP-1 colocalized with PDGF-receptor beta (PDGFRbeta) in HSCs both in the injury models and in human and rat HSC cell lines. In human HSCs, siRNA-mediated knockdown of NRP-1 attenuated PDGF-induced chemotaxis, while NRP-1 overexpression increased cell motility and TGF-beta-dependent collagen production. Similarly, mouse HSCs genetically modified to lack NRP-1 displayed reduced motility in response to PDGF treatment. Immunoprecipitation and biochemical binding studies revealed that NRP-1 increased PDGF binding affinity for PDGFRbeta-expressing cells and promoted downstream signaling. An NRP-1 neutralizing Ab ameliorated recruitment of HSCs, blocked liver fibrosis in a rat model of liver injury, and also attenuated VEGF responses in cultured liver endothelial cells. In addition, NRP-1 overexpression was observed in human specimens of liver cirrhosis caused by both hepatitis C and steatohepatitis. These studies reveal a role for NRP-1 as a modulator of multiple growth factor targets that regulate liver fibrosis and the vascular changes that accompany it and may have broad implications for liver cirrhosis and myofibroblast biology in a variety of other organ systems and disease conditions.


Journal of Biological Chemistry | 2010

Neuropilin-1 Mediates Divergent R-Smad Signaling and the Myofibroblast Phenotype

Ying Cao; Annamária Szabolcs; Shamit K. Dutta; Usman Yaqoob; Kumaravelu Jagavelu; Ling Wang; Edward B. Leof; Raul Urrutia; Vijay H. Shah; Debabrata Mukhopadhyay

The transforming growth factor-beta (TGF-β) superfamily is one of the most diversified cell signaling pathways and regulates many physiological and pathological processes. Recently, neuropilin-1 (NRP-1) was reported to bind and activate the latent form of TGF-β1 (LAP-TGF-β1). We investigated the role of NRP-1 on Smad signaling in stromal fibroblasts upon TGF-β stimulation. Elimination of NRP-1 in stromal fibroblast cell lines increases Smad1/5 phosphorylation and downstream responses as evidenced by up-regulation of inhibitor of differentiation (Id-1). Conversely, NRP-1 loss decreases Smad2/3 phosphorylation and its responses as shown by down-regulation of α-smooth muscle actin (α-SMA) and also cells exhibit more quiescent phenotypes and growth arrest. Moreover, we also observed that NRP-1 expression is increased during the culture activation of hepatic stellate cells (HSCs), a liver resident fibroblast. Taken together, our data suggest that NRP-1 functions as a key determinant of the diverse responses downstream of TGF-β1 that are mediated by distinct Smad proteins and promotes myofibroblast phenotype.


Cancer Research | 2012

Neuropilin-1 stimulates tumor growth by increasing fibronectin fibril assembly in the tumor microenvironment.

Usman Yaqoob; Sheng Cao; Uday Shergill; Kumaravelu Jagavelu; Zhimin Geng; Meng Yin; Thiago de Assuncao; Ying Cao; Anna Szabolcs; Snorri S. Thorgeirsson; Martin A. Schwartz; Ju Dong Yang; Richard L. Ehman; Lewis R. Roberts; Debabrata Mukhopadhyay; Vijay H. Shah

The tumor microenvironment, including stromal myofibroblasts and associated matrix proteins, regulates cancer cell invasion and proliferation. Here, we report that neuropilin-1 (NRP-1) orchestrates communications between myofibroblasts and soluble fibronectin that promote α5β1 integrin-dependent fibronectin fibril assembly, matrix stiffness, and tumor growth. Tumor growth and fibronectin fibril assembly were reduced by genetic depletion or antibody neutralization of NRP-1 from stromal myofibroblasts in vivo. Mechanistically, the increase in fibronectin fibril assembly required glycosylation of serine 612 of the extracellular domain of NRP-1, an intact intracellular NRP-1 SEA domain, and intracellular associations between NRP-1, the scaffold protein GIPC, and the nonreceptor tyrosine kinase c-Abl that augmented α5β1 fibronectin fibril assembly activity. Analysis of human cancer specimens established an association between tumoral NRP-1 levels and clinical outcome. Our findings indicate that NRP-1 activates the tumor microenvironment, thereby promoting tumor growth. These results not only identify new molecular mechanisms of fibronectin fibril assembly but also have important implications for therapeutic targeting of the myofibroblast in the tumor microenvironment.


Journal of Biological Chemistry | 2015

Exosome Adherence and Internalization by Hepatic Stellate Cells Triggers Sphingosine 1-Phosphate-dependent Migration

Ruisi Wang; Qian Ding; Usman Yaqoob; Thiago de Assuncao; Vikas K. Verma; Petra Hirsova; Sheng Cao; Debabrata Mukhopadhyay; Robert C. Huebert; Vijay H. Shah

Exosomes are cell-derived extracellular vesicles thought to promote intercellular communication by delivering specific content to target cells. The aim of this study was to determine whether endothelial cell (EC)-derived exosomes could regulate the phenotype of hepatic stellate cells (HSCs). Initial microarray studies showed that fibroblast growth factor 2 induced a 2.4-fold increase in mRNA levels of sphingosine kinase 1 (SK1). Exosomes derived from an SK1-overexpressing EC line increased HSC migration 3.2-fold. Migration was not conferred by the dominant negative SK1 exosome. Incubation of HSCs with exosomes was also associated with an 8.3-fold increase in phosphorylation of AKT and 2.5-fold increase in migration. Exosomes were found to express the matrix protein and integrin ligand fibronectin (FN) by Western blot analysis and transmission electron microscopy. Blockade of the FN-integrin interaction with a CD29 neutralizing antibody or the RGD peptide attenuated exosome-induced HSC AKT phosphorylation and migration. Inhibition of endocytosis with transfection of dynamin siRNA, the dominant negative dynamin GTPase construct Dyn2K44A, or the pharmacological inhibitor Dynasore significantly attenuated exosome-induced AKT phosphorylation. SK1 levels were increased in serum exosomes derived from mice with experimental liver fibrosis, and SK1 mRNA levels were up-regulated 2.5-fold in human liver cirrhosis patient samples. Finally, S1PR2 inhibition protected mice from CCl4-induced liver fibrosis. Therefore, EC-derived SK1-containing exosomes regulate HSC signaling and migration through FN-integrin-dependent exosome adherence and dynamin-dependent exosome internalization. These findings advance our understanding of EC/HSC cross-talk and identify exosomes as a potential target to attenuate pathobiology signals.


American Journal of Pathology | 2008

Nitric Oxide Regulates Tumor Cell Cross-Talk with Stromal Cells in the Tumor Microenvironment of the Liver

Ningling Kang Decker; Soha Saoud Abdelmoneim; Usman Yaqoob; Helen Hendrickson; Joe Hormes; Michael D. Bentley; Henry C. Pitot; Raul Urrutia; Greg J. Gores; Vijay H. Shah

Tumor progression is regulated through paracrine interactions between tumor cells and stromal cells in the microenvironment, including endothelial cells and myofibroblasts. Nitric oxide (NO) is a key molecule in the regulation of tumor-microenvironment interactions, although its precise role is incompletely defined. By using complementary in vitro and in vivo approaches, we studied the effect of endothelial NO synthase (eNOS)-derived NO on liver tumor growth and metastasis in relation to adjacent stromal myofibroblasts and matrix because liver tumors maintain a rich, vascular stromal network enriched with phenotypically heterogeneous myofibroblasts. Mice with an eNOS deficiency developed liver tumors more frequently in response to carcinogens compared with control animals. In a surgical model of pancreatic cancer liver metastasis, eNOS overexpression in the tumor microenvironment attenuated both the number and size of tumor implants. NO promoted anoikis of tumor cells in vitro and limited their invasive capacity. Because tumor cell anoikis and invasion are both regulated by myofibroblast-derived matrix, we explored the effect of NO on tumor cell protease expression. Both microarray and Western blot analysis revealed eNOS-dependent down-regulation of the matrix protease cathepsin B within tumor cells, and silencing of cathepsin B attenuated tumor cell invasive capacity in a similar manner to that observed with eNOS overexpression. Thus, a NO gradient within the tumor microenvironment influences tumor progression through orchestrated molecular interactions between tumor cells and stroma.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2013

HMGB1 recruits hepatic stellate cells and liver endothelial cells to sites of ethanol-induced parenchymal cell injury

Yeon Seok Seo; Jung Hee Kwon; Usman Yaqoob; Liu Yang; Thiago de Assuncao; Douglas A. Simonetto; Vikas K. Verma; Vijay H. Shah

Hepatic stellate cells (HSC) and liver endothelial cells (LEC) migrate to sites of injury and perpetuate alcohol-induced liver injury. High-mobility group box 1 (HMGB1) is a protein released from the nucleus of injured cells that has been implicated as a proinflammatory mediator. We hypothesized that HMGB1 may be released from ethanol-stimulated liver parenchymal cells and contribute to HSC and LEC recruitment. Ethanol stimulation of rat hepatocytes and HepG2 cells resulted in translocation of HMGB1 from the nucleus as assessed by Western blot. HMGB1 protein levels were increased in the supernatant of ethanol-treated hepatocytes compared with vehicle-treated cells. Migration of both HSC and LEC was increased in response to conditioned medium for ethanol-stimulated hepatocytes (CMEtOH) compared with vehicle-stimulated hepatocytes (CMVEH) (P < 0.05). However, the effect of CMEtOH on migration was almost entirely reversed by treatment with HMGB1-neutralizing antibody or when HepG2 cells were pretransfected with HMGB1-siRNA compared with control siRNA-transfected HepG2 cells (P < 0.05). Recombinant HMGB1 (100 ng/ml) also stimulated migration of HSC and LEC compared with vehicle stimulation (P < 0.05 for both HSC and LEC). HMGB1 stimulation of HSC increased the phosphorylation of Src and Erk and HMGB1-induced HSC migration was blocked by the Src inhibitor PP2 and the Erk inhibitor U0126. Hepatocytes release HMGB1 in response to ethanol with subsequent recruitment of HSC and LEC. This pathway has implications for HSC and LEC recruitment to sites of ethanol-induced liver injury.


Journal of Biological Chemistry | 2014

New role for Kruppel-like factor 14 as a transcriptional activator involved in the generation of signaling lipids.

Thiago de Assuncao; Gwen Lomberk; Sheng Cao; Usman Yaqoob; Angela Mathison; Douglas A. Simonetto; Robert C. Huebert; Raul Urrutia; Vijay H. Shah

Background: KLF14 has elicited attention as a master regulator of lipid metabolism. Results: KLF14 regulates chromatin remodeling on sphingosine kinase 1 gene leading to its activation and sphingosine-1-phosphate production. Conclusion: KLF14 acts as a transcriptional activator for the generation of lipid signaling molecules. Significance: This new knowledge extends the functions assigned to KLF14 and contributes to understanding its role in human diseases. Sphingosine kinase 1 (SK1) is an FGF-inducible gene responsible for generation of sphingosine-1-phosphate, a critical lipid signaling molecule implicated in diverse endothelial cell functions. In this study, we identified SK1 as a target of the canonical FGF2/FGF receptor 1 activation pathway in endothelial cells and sought to identify novel transcriptional pathways that mediate lipid signaling. Studies using the 1.9-kb SK1 promoter and deletion mutants revealed that basal and FGF2-stimulated promoter activity occurred through two GC-rich regions located within 633 bp of the transcription start site. Screening for GC-rich binding transcription factors that could activate this site demonstrated that KLF14, a gene implicated in obesity and the metabolic syndrome, binds to this region. Congruently, overexpression of KLF14 increased basal and FGF2-stimulated SK1 promoter activity by 3-fold, and this effect was abrogated after mutation of the GC-rich sites. In addition, KLF14 siRNA transfection decreased SK1 mRNA and protein levels by 3-fold. Congruently, SK1 mRNA and protein levels were decreased in livers from KLF14 knock-out mice. Combined, luciferase, gel shift, and chromatin immunoprecipitation assays showed that KLF14 couples to p300 to increase the levels of histone marks associated with transcriptional activation (H4K8ac and H3K14ac), while decreasing repressive marks (H3K9me3 and H3K27me3). Collectively, the results demonstrate a novel mechanism whereby SK1 lipid signaling is regulated by epigenetic modifications conferred by KLF14 and p300. Thus, this is the first description of the activity and mechanisms underlying the function of KLF14 as an activator protein and novel regulator of lipid signaling.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2009

FXR Promotes Endothelial Cell Motility Through Coordinated Regulation of FAK and MMP-9

Amitava Das; Usman Yaqoob; Dolly Mehta; Vijay H. Shah

Objective—Farnesoid X Receptor (FXR) mediates important signaling functions of bile acids in diverse cell types including those residing in the vascular wall. Indeed, recent work has identified FXR as a potential regulator of vascular structure and function in part through transcriptional activation of MMP-9. However, the signal transduction pathways linking bile acids to changes in actin cytoskeleton that are responsible for bile acid–induced vascular cell migration remain unexplored. Methods and Results—The FXR agonist and prototypical bile acid, chenodeoxycholic acid (CDCA), significantly increased endothelial cell (EC) motility, as analyzed by time lapse video microscopy, and tube formation, an in vitro correlate for angiogenesis. Increased cell motility was associated with prominent increases in focal adhesion (FA) plaques and was inhibited by FXR or MMP-9 siRNA, indicating a FXR–MMP-9–dependency of this signaling pathway. Mechanistically, incubation of cells with CDCA was associated with phosphorylation of a key FA protein, Focal Adhesion Kinase (FAK) at Y397 but not at Y576/577, or Y925. Studies using a site-specific phosphorylation mutant (phosphodeficient) of FAK revealed that FAK phosphorylation at tyrosine residue −397 was required for CDCA induced activation of the downstream FA assembly protein, paxillin. Lastly, siRNA-based silencing of FAK as well as phosphodeficient FAK mutant inhibited CDCA induced upregulation of MMP-9, cell motility, and vascular tube formation. Conclusion—Thus, this study demonstrates a pivotal role for FAK in the process of FXR-induced and MMP-9–dependent EC motility and vascular tube formation.


American Journal of Pathology | 2010

Focal Adhesion Assembly in Myofibroblasts Fosters a Microenvironment that Promotes Tumor Growth

Ningling Kang; Usman Yaqoob; Zhimin Geng; Kenneth D. Bloch; Chunsheng Liu; Timothy S. Gomez; Daniel D. Billadeau; Vijay H. Shah

Cells within the tumor microenvironment influence tumor growth through multiple mechanisms. Pericytes such as hepatic stellate cells are an important cell within the tumor microenvironment; their transformation into highly motile myofibroblasts leads to angiogenesis, stromal cell recruitment, matrix deposition, and ensuing tumor growth. Thus, a better understanding of mechanisms that regulate motility of pericytes is required. Focal adhesions (FAs) form a physical link between the extracellular environment and the actin cytoskeleton, a requisite step for cell motility. FAs contain a collection of proteins including the Ena/VASP family member, vasodilator-stimulated phosphoprotein (VASP); however, a role for VASP in FA development has been elusive. Using a comprehensive siRNA knockdown approach and a variety of VASP mutants coupled with complementary cell imaging methodologies, we demonstrate a requirement of VASP for optimal development of FAs and cell spreading in LX2 liver myofibroblasts, which express high levels of endogenous VASP. Rac1, a binding partner of VASP, acts in tandem with VASP to regulate FAs. In vivo, perturbation of Ena/VASP function in tumor myofibroblast precursor cells significantly reduces pericyte recruitment to tumor vasculature, myofibroblastic transformation, tumor angiogenesis, and tumor growth, providing in vivo pathobiologic relevance to these findings. Taken together, our results identify Ena/VASP as a significant modifier of tumor growth through regulation of FA dynamics and ensuing pericyte/myofibroblast function within the tumor microenvironment.


American Journal of Physiology-cell Physiology | 2011

Protein kinase G signaling disrupts Rac1-dependent focal adhesion assembly in liver specific pericytes

Chittaranjan Routray; Chunsheng Liu; Usman Yaqoob; Daniel D. Billadeau; Kenneth D. Bloch; Kozo Kaibuchi; Vijay H. Shah; Ningling Kang

Nitric oxide (NO) regulates the function of perivascular cells (pericytes), including hepatic stellate cells (HSC), mainly by activating cGMP and cGMP-dependent kinase (PKG) via NO/cGMP paracrine signaling. Although PKG is implicated in integrin-mediated cell adhesion to extracellular matrix, whether or how PKG signaling regulates the assembly of focal adhesion complexes (FA) and migration of HSC is not known. With the help of complementary molecular and cell biological approaches, we demonstrate here that activation of PKG signaling in HSC inhibits vascular tubulogenesis, migration/chemotaxis, and assembly of mature FA plaques, as assessed by vascular tubulogenesis assays and immunofluorescence localization of FA markers such as vinculin and vasodilator-stimulated phosphoprotein (VASP). To determine whether PKG inhibits FA assembly by phosphorylation of VASP at Ser-157, Ser-239, and Thr-278, we mutated these putative phosphorylation sites to alanine (VASP3A, phosphoresistant mutant) or aspartic acid (VASP3D, phosphomimetic), respectively. Data generated from these two mutants suggest that the effect of PKG on FA is independent of these three phosphorylation sites. In contrast, activation of PKG inhibits the activity of small GTPase Rac1 and its association with the effector protein IQGAP1. Moreover, PKG activation inhibits the formation of a trimeric protein complex containing Rac1, IQGAP1, and VASP. Finally, we found that expression of a constitutively active Rac1 mutant abolishes the inhibitory effects of PKG on FA formation. In summary, our data suggest that activation of PKG signaling in pericytes inhibits FA formation by inhibiting Rac1.

Collaboration


Dive into the Usman Yaqoob's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge