V. B. Saprunova
Moscow State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by V. B. Saprunova.
Biochemistry | 2008
Yuri N. Antonenko; Armine V. Avetisyan; L. E. Bakeeva; Boris V. Chernyak; V. A. Chertkov; Domnina Lv; O. Yu. Ivanova; Denis S. Izyumov; L. S. Khailova; Sergey S. Klishin; Galina A. Korshunova; Konstantin G. Lyamzaev; Maria S. Muntyan; O. K. Nepryakhina; Alina A. Pashkovskaya; O. Yu. Pletjushkina; Antonina V. Pustovidko; Vitaly Roginsky; Tatyana I. Rokitskaya; Ruuge Ek; V. B. Saprunova; Inna I. Severina; Ruben A. Simonyan; I. V. Skulachev; Maxim V. Skulachev; N. V. Sumbatyan; I. V. Sviryaeva; Vadim N. Tashlitsky; J. M. Vassiliev; M. Yu. Vyssokikh
Synthesis of cationic plastoquinone derivatives (SkQs) containing positively charged phosphonium or rhodamine moieties connected to plastoquinone by decane or pentane linkers is described. It is shown that SkQs (i) easily penetrate through planar, mitochondrial, and outer cell membranes, (ii) at low (nanomolar) concentrations, posses strong antioxidant activity in aqueous solution, BLM, lipid micelles, liposomes, isolated mitochondria, and cells, (iii) at higher (micromolar) concentrations, show pronounced prooxidant activity, the “window” between anti- and prooxidant concentrations being very much larger than for MitoQ, a cationic ubiquinone derivative showing very much lower antioxidant activity and higher prooxidant activity, (iv) are reduced by the respiratory chain to SkQH2, the rate of oxidation of SkQH2 being lower than the rate of SkQ reduction, and (v) prevent oxidation of mitochondrial cardiolipin by OH·. In HeLa cells and human fibroblasts, SkQs operate as powerful inhibitors of the ROS-induced apoptosis and necrosis. For the two most active SkQs, namely SkQ1 and SkQR1, C1/2 values for inhibition of the H2O2-induced apoptosis in fibroblasts appear to be as low as 1·10−11 and 8·10−13 M, respectively. SkQR1, a fluorescent representative of the SkQ family, specifically stains a single type of organelles in the living cell, i.e. energized mitochondria. Such specificity is explained by the fact that it is the mitochondrial matrix that is the only negatively-charged compartment inside the cell. Assuming that the Δψ values on the outer cell and inner mitochondrial membranes are about 60 and 180 mV, respectively, and taking into account distribution coefficient of SkQ1 between lipid and water (about 13,000: 1), the SkQ1 concentration in the inner leaflet of the inner mitochondrial membrane should be 1.3·108 times higher than in the extracellular space. This explains the very high efficiency of such compounds in experiments on cell cultures. It is concluded that SkQs are rechargeable, mitochondria-targeted antioxidants of very high efficiency and specificity. Therefore, they might be used to effectively prevent ROS-induced oxidation of lipids and proteins in the inner mitochondrial membrane in vivo.
Biochemistry | 2008
L. E. Bakeeva; I. V. Barskov; M. V. Egorov; N. K. Isaev; Kapel'ko Vi; A. V. Kazachenko; V.I. Kirpatovsky; S. V. Kozlovsky; V. L. Lakomkin; S. B. Levina; O. I. Pisarenko; E. Y. Plotnikov; V. B. Saprunova; L. I. Serebryakova; Maxim V. Skulachev; E. V. Stelmashook; I. M. Studneva; O. V. Tskitishvili; A. K. Vasilyeva; Ilya V. Victorov; Dmitry B. Zorov; Vladimir P. Skulachev
Effects of 10-(6′-plastoquinonyl) decyltriphenylphosphonium (SkQ1) and 10-(6′-plastoquinonyl) decylrhod-amine 19 (SkQR1) on rat models of H2O2- and ischemia-induced heart arrhythmia, heart infarction, kidney ischemia, and stroke have been studied ex vivo and in vivo. In all the models listed, SkQ1 and/or SkQR1 showed pronounced protective effect. Supplementation of food with extremely low SkQ1 amount (down to 0.02 nmol SkQ1/kg per day for 3 weeks) was found to abolish the steady heart arrhythmia caused by perfusion of isolated rat heart with H2O2 or by ischemia/reperfusion. Higher SkQ1 (125–250 nmol/kg per day for 2–3 weeks) was found to decrease the heart infarction region induced by an in vivo ischemia/reperfusion and lowered the blood levels of lactate dehydrogenase and creatine kinase increasing as a result of ischemia/reperfusion. In single-kidney rats, ischemia/reperfusion of the kidney was shown to kill the majority of the animals in 2–4 days, whereas one injection of SkQ1 or SkQR1 (1 μmol/kg a day before ischemia) saved lives of almost all treated rats. Effect of SkQR1 was accompanied by decrease in ROS (reactive oxygen species) level in kidney cells as well as by partial or complete normalization of blood creatinine and of some other kidney-controlled parameters. On the other hand, this amount of SkQ1 (a SkQ derivative of lower membrane-penetrating ability than SkQR1) saved the life but failed to normalize ROS and creatinine levels. Such an effect indicates that death under conditions of partial kidney dysfunction is mediated by an organ of vital importance other than kidney, the organ in question being an SkQ1 target. In a model of compression brain ischemia/reperfusion, a single intraperitoneal injection of SkQR1 to a rat (1 μmol/kg a day before operation) effectively decreased the damaged brain area. SkQ1 was ineffective, most probably due to lower permeability of the blood-brain barrier to this compound.
Molecular and Cellular Biochemistry | 2004
Vladimir P. Skulachev; L. E. Bakeeva; Boris V. Chernyak; Domnina Lv; Alexander A. Minin; Olga Yu. Pletjushkina; V. B. Saprunova; Innokenty V. Skulachev; Valeria G. Tsyplenkova; Jury M. Vasiliev; L. S. Yaguzhinsky; Dmitry B. Zorov
Association of mitochondrial population to a mitochondrial reticulum is typical of many types of the healthy cells. This allows the cell to organize a united intracellular power-transmitting system. However, such an association can create some difficulties for the cell when a part of the reticulum is damaged or when mitochondria should migrate from one cell region to another. It is shown that in these cases decomposition of extended mitochondria to small roundish organelles takes place (the thread-grain transition). As an intermediate step of this process, formation of bead-like mitochondria occurs when several swollen parts of the mitochondrial filament are interconnected with thin thread-like mitochondrial structures. A hypothesis is put forward that the thread-grain transition is used as a mechanism to isolate a damaged part of the mitochondrial system from its intact parts. If the injury is not repaired, spherical mitochondrion originated from the damaged part of the reticulum is assumed to convert to a small ultracondensed and presumably dead mitochondrion (this process is called ‘mitoptosis’). Then the dead mitochondrion is engulfed by an autophagosome. Sometimes, an ultracondensed mitoplast co-exists with a normal mitoplast, both of them being surrounded by a common outer mitochondrial membrane. During apoptosis, massive thread-grain transition is observed which, according to Youle et al. (S. Frank et al., Dev Cell 1: 515, 2002), is mediated by a dynamin-related protein and represents an obligatory step of the mitochondria-mediated apoptosis. We found that there is a lag phase between addition of an apoptogenic agent and the thread-grain transition. When started, the transition occurs very fast. It is also found that this event precedes complete de-energization of mitochondria and cytochrome c release to cytosol. When formed, small mitochondria migrate to (and in certain rare cases even into) the nucleus. It is suggested that small mitochondria may serve as a transportable form of organelles (‘cargo boats’ transporting some apoptotic proteins to their nuclear targets).
Biochemistry | 2008
V. V. Neroev; M. M. Archipova; L. E. Bakeeva; A. Zh. Fursova; E. N. Grigorian; A. Yu. Grishanova; E Iomdina; Zh. N. Ivashchenko; L. A. Katargina; Khoroshilova-Maslova Ip; O. V. Kilina; N. G. Kolosova; E. P. Kopenkin; Sergey S Korshunov; N. A. Kovaleva; Yu. P. Novikova; Pavel P. Philippov; D. I. Pilipenko; Robustova Ov; V. B. Saprunova; Ivan I. Senin; Maxim V. Skulachev; L. F. Sotnikova; N. A. Stefanova; N. K. Tikhomirova; I. V. Tsapenko; A. I. Shchipanova; R. A. Zinovkin; Vladimir P. Skulachev
Mitochondria-targeted cationic plastoquinone derivative SkQ1 (10-(6′-plastoquinonyl) decyltriphenylphosphonium) has been investigated as a potential tool for treating a number of ROS-related ocular diseases. In OXYS rats suffering from a ROS-induced progeria, very small amounts of SkQ1 (50 nmol/kg per day) added to food were found to prevent development of age_induced cataract and retinopathies of the eye, lipid peroxidation and protein carbonylation in skeletal muscles, as well as a decrease in bone mineralization. Instillation of drops of 250 nM SkQ1 reversed cataract and retinopathies in 3-12-month-old (but not in 24-month-old) OXYS rats. In rabbits, experimental uveitis and glaucoma were induced by immunization with arrestin and injections of hydroxypropyl methyl cellulose to the eye anterior sector, respectively. Uveitis was found to be prevented or reversed by instillation of 250 nM SkQ1 drops (four drops per day). Development of glaucoma was retarded by drops of 5 μM SkQ1 (one drop daily). SkQ1 was tested in veterinarian practice. A totally of 271 animals (dogs, cats, and horses) suffering from retinopathies, uveitis, conjunctivitis, and cornea diseases were treated with drops of 250 nM SkQ1. In 242 cases, positive therapeutic effect was obvious. Among animals suffering from retinopathies, 89 were blind. In 67 cases, vision returned after SkQ1 treatment. In ex vivo studies of cultivated posterior retina sector, it was found that 20 nM SkQ1 strongly decreased macrophagal transformation of the retinal pigmented epithelial cells, an effect which might explain some of the above SkQ1 activities. It is concluded that low concentrations of SkQ1 are promising in treating retinopathies, cataract, uveitis, glaucoma, and some other ocular diseases.
Oncogene | 2002
Liarisa A. Shchepina; Olga Yu. Pletjushkina; Armine V. Avetisyan; Liora E. Bakeeva; Fetisova Ek; Denis S. Izyumov; V. B. Saprunova; Mikhail Yu. Vyssokikh; Boris V. Chernyak; Vladimir P. Skulachev
The release of cytochrome c from the intermembrane space of mitochondria into the cytosol is one of the critical events in apoptotic cell death. In the present study, it is shown that release of cytochrome c and apoptosis induced by tumor necrosis factor α (TNF) in HeLa cells can be inhibited by (i) overexpression of an oncoprotein Bcl-2, (ii) Cyclosporin A, an inhibitor of the mitochondrial permeability transition pore (PTP) or (iii) oligomycin, an inhibitor of H+- ATP-synthase. Staurosporine-induced apoptosis is sensitive to Bcl-2 but insensitive to Cyclosporin A and oligomycin. The effect of oligomycin is not due to changes in mitochondrial membrane potential or to inhibition of ATP synthesis/hydrolysis since (a) uncouplers (CCCP, DNP) which discharge the membrane potential fail to abolish the protective action of oligomycin and (b) aurovertin B (another inhibitor of H+-ATP-synthase, affecting its F1 component) do not affect apoptosis. A role of oligomycin-sensitive F0 component of H+-ATP-synthase in the TNF-induced PTP opening and apoptosis is suggested.
Biochemistry | 2008
Vladimir N. Anisimov; L. E. Bakeeva; P. A. Egormin; O. F. Filenko; E. F. Isakova; V. N. Manskikh; V. M. Mikhelson; A. A. Panteleeva; Elena G. Pasyukova; D. I. Pilipenko; T. S. Piskunova; Irina G. Popovich; N. V. Roshchina; O. Yu. Rybina; V. B. Saprunova; T. A. Samoylova; A. V. Semenchenko; Maxim V. Skulachev; I. M. Spivak; E. A. Tsybul’ko; M. L. Tyndyk; M. Yu. Vyssokikh; Maria N. Yurova; Mark Abramovich Zabezhinsky; Vladimir P. Skulachev
Very low (nano- and subnanomolar) concentrations of 10-(6′-plastoquinonyl) decyltriphenylphosphonium (SkQ1) were found to prolong lifespan of a fungus (Podospora anserina), a crustacean (Ceriodaphnia affinis), an insect (Drosophila melanogaster), and a mammal (mouse). In the latter case, median lifespan is doubled if animals live in a non-sterile vivarium. The lifespan increase is accompanied by rectangularization of the survival curves (an increase in survival is much larger at early than at late ages) and disappearance of typical traits of senescence or retardation of their development. Data summarized here and in the preceding papers of this series suggest that mitochondria-targeted antioxidant SkQ1 is competent in slowing down execution of an aging program responsible for development of age-related senescence.
Biochemical Society Transactions | 2004
Konstantin G. Lyamzaev; Olga Yu. Pletjushkina; V. B. Saprunova; L. E. Bakeeva; Boris V. Chernyak; Vladimir P. Skulachev
The inhibitors of oxidative phosphorylation induced fragmentation of mitochondria without any signs of apoptosis in CV-1 and HeLa cells. Prolonged treatment with the uncouplers (alone or in combination with the inhibitors of respiration) caused perinuclear clusterization of mitochondria, followed by their selective elimination. The fraction of mitochondria-depleted cells remained viable.
Biochemistry | 2012
V. B. Saprunova; M. A. Lelekova; N. G. Kolosova; L. E. Bakeeva
We show the development of clearly pronounced age-related pathological changes in eye tissues of Wistar and OXYS rats. Photoreceptor cells were virtually absent in all OXYS rats in the age of 24 months. Massive accumulations of lipofuscin granules were detected in the pigmented epithelium cells. Flattening, overgrowing, and degradation of endothelial cells of choriocapillaries were also observed. Along with these changes, vessels without signs of degradation were detected in the pigmented epithelium. In 24-month-old Wistar rats these changes were local and were seen in only some of the animals. The mitochondria-targeted antioxidant SkQ1 (the rats were given SkQ1 daily with food at the dose of 250 nmol/kg for 5 months, starting from the age of 19 months) prevented the development of these pathological changes in both Wistar and OXYS rats. The data were subjected to mathematical processing and statistical analysis.
Biochemistry | 2010
V. B. Saprunova; D. I. Pilipenko; A. V. Alexeevsky; A. Zh. Fursova; N. G. Kolosova; L. E. Bakeeva
The pigment epithelium cell structure and therapeutic effect of antioxidant SkQ1, selectively penetrating into mitochondria from eye drops, were studied upon development in OXYS rats of age-related retinopathy as a model of macular degeneration. The characteristic dynamics and ultrastructural peculiarities of the layer of electron-dense cytoplasmic structures of the pigment epithelium apex part and incorporated lipofuscin granules were revealed. The therapy of OXYS animals for 68 days using 250 nM SkQ1 drops decreased the extent of development of age-related macular degeneration. Electron-microscopic investigation showed that SkQ1 prevented development of ultrastructural changes in the pigment epithelium characteristic of macular degeneration, the condition of which after therapy with SkQ1 drops corresponded to ultrastructure of pigment epithelium in Wistar rats of the same age having no symptoms of retinal damage. It is supposed that ultrastructural changes in the electron-dense layer upon development of age-related macular degeneration are indicative of disturbances in the optical cycle functioning, especially of disturbances in functioning of photoreceptor membranes.
Biochemistry | 2003
A. A. Tonshin; V. B. Saprunova; I. M. Solodovnikova; L. E. Bakeeva; L. S. Yaguzhinsky
Apoptosis in myocardial tissue slices was induced by extended incubation under anoxic conditions. Mitochondria were isolated from the studied tissue. A new method of isolation of mitochondria in special conditions by differential centrifugation at 1700, 10,000, and 17,000g resulted in three fractions of mitochondria. According to the data of electron microscopy the heavy mitochondrial fraction (1700g) consisted of mitochondrial clusters only, the middle mitochondrial fraction (10,000g) consisted of mitochondria with typical for isolated mitochondria ultrastructure, and the light fraction consisted of small mitochondria (2 or 3 cristae) of various preservation. The heavy fraction contained unusual structural elements that we detected earlier in apoptotic myocardial tissue—small electron-dense mitochondria incorporated in bigger mitochondria. The structure of small mitochondria from the light fraction corresponded to that of the small mitochondria from these unusual elements—“mitochondrion in mitochondrion”. The most important functions of isolated mitochondria are strongly inhibited when apoptosis is induced in our model. The detailed study of the activities of the two fractions of the apoptotic mitochondria showed that the system of malate oxidation is completely altered, the activity of cytochrome c as electron carrier is partly inhibited, while succinate oxidase activity is completely preserved (complexes II, III, and IV of the respiration chain). Succinate oxidase activity was accompanied by high permeability of the internal membrane for protons: the addition of uncoupler did not stimulate respiration. ATP synthesis in mitochondria was inhibited. We demonstrated that in our model of apoptosis cytochrome c remains in the intermembrane space, and, consequently, is not involved in the cascade of activation of effector caspases. The possible mechanisms of induction of apoptosis during anoxia are discussed.