Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vadym Mochalin is active.

Publication


Featured researches published by Vadym Mochalin.


Nature Nanotechnology | 2010

Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon

David Pech; Magali Brunet; Hugo Durou; Peihua Huang; Vadym Mochalin; Yury Gogotsi; Pierre-Louis Taberna; Patrice Simon

Electrochemical capacitors, also called supercapacitors, store energy in two closely spaced layers with opposing charges, and are used to power hybrid electric vehicles, portable electronic equipment and other devices. By offering fast charging and discharging rates, and the ability to sustain millions of cycles, electrochemical capacitors bridge the gap between batteries, which offer high energy densities but are slow, and conventional electrolytic capacitors, which are fast but have low energy densities. Here, we demonstrate microsupercapacitors with powers per volume that are comparable to electrolytic capacitors, capacitances that are four orders of magnitude higher, and energies per volume that are an order of magnitude higher. We also measured discharge rates of up to 200 V s(-1), which is three orders of magnitude higher than conventional supercapacitors. The microsupercapacitors are produced by the electrophoretic deposition of a several-micrometre-thick layer of nanostructured carbon onions with diameters of 6-7 nm. Integration of these nanoparticles in a microdevice with a high surface-to-volume ratio, without the use of organic binders and polymer separators, improves performance because of the ease with which ions can access the active material. Increasing the energy density and discharge rates of supercapacitors will enable them to compete with batteries and conventional electrolytic capacitors in a number of applications.


Nature Nanotechnology | 2012

The properties and applications of nanodiamonds

Vadym Mochalin; Olga A. Shenderova; Dean Ho; Yury Gogotsi

Nanodiamonds have excellent mechanical and optical properties, high surface areas and tunable surface structures. They are also non-toxic, which makes them well suited to biomedical applications. Here we review the synthesis, structure, properties, surface chemistry and phase transformations of individual nanodiamonds and clusters of nanodiamonds. In particular we discuss the rational control of the mechanical, chemical, electronic and optical properties of nanodiamonds through surface doping, interior doping and the introduction of functional groups. These little gems have a wide range of potential applications in tribology, drug delivery, bioimaging and tissue engineering, and also as protein mimics and a filler material for nanocomposites.


Journal of the American Chemical Society | 2014

Role of Surface Structure on Li-Ion Energy Storage Capacity of Two-Dimensional Transition-Metal Carbides

Yu Xie; Michael Naguib; Vadym Mochalin; Michel W. Barsoum; Yury Gogotsi; Xiqian Yu; Kyung-Wan Nam; Xiao-Qing Yang; Alexander I. Kolesnikov; Paul R. C. Kent

A combination of density functional theory (DFT) calculations and experiments is used to shed light on the relation between surface structure and Li-ion storage capacities of the following functionalized two-dimensional (2D) transition-metal carbides or MXenes: Sc2C, Ti2C, Ti3C2, V2C, Cr2C, and Nb2C. The Li-ion storage capacities are found to strongly depend on the nature of the surface functional groups, with O groups exhibiting the highest theoretical Li-ion storage capacities. MXene surfaces can be initially covered with OH groups, removable by high-temperature treatment or by reactions in the first lithiation cycle. This was verified by annealing f-Nb2C and f-Ti3C2 at 673 and 773 K in vacuum for 40 h and in situ X-ray adsorption spectroscopy (XAS) and Li capacity measurements for the first lithiation/delithiation cycle of f-Ti3C2. The high-temperature removal of water and OH was confirmed using X-ray diffraction and inelastic neutron scattering. The voltage profile and X-ray adsorption near edge structure of f-Ti3C2 revealed surface reactions in the first lithiation cycle. Moreover, lithiated oxygen terminated MXenes surfaces are able to adsorb additional Li beyond a monolayer, providing a mechanism to substantially increase capacity, as observed mainly in delaminated MXenes and confirmed by DFT calculations and XAS. The calculated Li diffusion barriers are low, indicative of the measured high-rate performance. We predict the not yet synthesized Cr2C to possess high Li capacity due to the low activation energy of water formation at high temperature, while the not yet synthesized Sc2C is predicted to potentially display low Li capacity due to higher reaction barriers for OH removal.


Journal of the American Chemical Society | 2009

Wet chemistry route to hydrophobic blue fluorescent nanodiamond.

Vadym Mochalin; Yury Gogotsi

Hydrophobic blue fluorescent nanodiamond was synthesized by covalent linking of octadecylamine to the surface of nanodiamond particles. The material is easily dispersible in hydrophobic solvents, forming a transparent colloidal solution, and can be used in those applications where stable dispersions of nanodiamond in fuels, polymers or oils are required. Bright blue fluorescence of the octadecylamine-modified nanodiamond opens up new avenues for its use as a non-toxic quantum dot analogue for biomedical imaging of cellular membranes and other hydrophobic components of biological systems. Similar surface modification can be used for other carbon nanoparticles.


Biomaterials | 2011

Fluorescent PLLA-nanodiamond composites for bone tissue engineering.

Qingwei Zhang; Vadym Mochalin; Ioannis Neitzel; Isabel Knoke; Jingjia Han; Christopher A. Klug; Jack G. Zhou; Peter I. Lelkes; Yury Gogotsi

Superior mechanical properties, rich surface chemistry, and good biocompatibility of diamond nanoparticles make them attractive in biomaterial applications. A multifunctional fluorescent composite bone scaffold material has been produced utilizing a biodegradable polymer, poly(l-lactic acid) (PLLA), and octadecylamine-functionalized nanodiamond (ND-ODA). The uniform dispersion of nanoparticles in the polymer led to significant increase in hardness and Youngs modulus of the composites. Addition of 10%wt of ND-ODA resulted in more than 200% increase in Youngs modulus and 800% increase in hardness, bringing the nanocomposite properties close to that of the human cortical bone. Testing of ND-ODA/PLLA as a matrix supporting murine osteoblast (7F2) cell growth for up to 1 week showed that the addition of ND-ODA had no negative effects on cell proliferation. ND-ODA serves as a multifunctional additive providing improved mechanical properties, bright fluorescence, and options for drug loading and delivery via surface modification. Thus ND-ODA/PLLA composites open up numerous avenues for their use as components of bone scaffolds and smart surgical tools such as fixation devices in musculoskeletal tissue engineering and regenerative medicine. Intense fluorescence of ND-ODA/PLLA scaffolds can be used to monitor bone re-growth replacing the implant in vivo.


ACS Nano | 2009

Nanodiamond-Polymer Composite Fibers and Coatings

Kristopher Behler; Antonella Stravato; Vadym Mochalin; Guzeliya Korneva; Gleb Yushin; Yury Gogotsi

While nanocrystalline diamond is quickly becoming one of the most widely studied nanomaterials, achieving a large fraction of diamond nanoparticles in a polymer coating has been an unresolved problem. In this work, polymer nano- and microfibers containing high loadings of 5 nm diamond particles (up to 80 wt % in polyacrylonitrile and 40% in polyamide 11) have been demonstrated using electrospun nanofibers as a delivery vehicle. The electrospun nanofibers with a high load of nanodiamond in the polymers were fused into thin transparent films, which had high mechanical properties; an improvement of 4 times for the Youngs modulus and 2 times for the hardness was observed already at 20% nanodiamond in polyamide 11. These films can provide UV protection and scratch resistance to a variety of surfaces, especially in applications where a combination of mechanical, thermal, and dielectric properties is required.


ACS Nano | 2011

Covalent Incorporation of Aminated Nanodiamond into an Epoxy Polymer Network

Vadym Mochalin; Ioannis Neitzel; Bastian J. M. Etzold; Amy M. Peterson; Giuseppe R. Palmese; Yury Gogotsi

Outstanding mechanical and optical properties of diamond nanoparticles in combination with their biocompatibility have recently attracted much attention. Modification of the surface chemistry and incorporation into a polymer is required in many applications of the nanodiamond. Nanodiamond powder with reactive amino groups (∼20% of the number of surface carbon atoms in each 5 nm particle) was produced in this work by covalent linking of ethylenediamine to the surface carboxyl groups via amide bonds. The synthesized material was reacted with epoxy resin, yielding a composite, in which nanodiamond particles are covalently incorporated into the polymer matrix. The effect of amino groups grafted on the nanodiamond on the curing chemistry of the epoxy resin was analyzed and taken into consideration. Covalently bonded nanodiamond-epoxy composites showed a three times higher hardness, 50% higher Youngs modulus, and two times lower creep compared to the composites in which the nanodiamond was not chemically linked to the matrix. Aminated nanodiamond produced and characterized in the present study may also find applications beyond the composites, for example, as a drug, protein, and gene delivery platform in biology and medicine, as a solid support in chromatography and separation science, and in solid state peptide synthesis.


Biomaterials | 2012

Mechanical properties and biomineralization of multifunctional nanodiamond-PLLA composites for bone tissue engineering.

Qingwei Zhang; Vadym Mochalin; Ioannis Neitzel; Kavan Hazeli; Jun Jie Niu; Antonios Kontsos; Jack G. Zhou; Peter I. Lelkes; Yury Gogotsi

Multifunctional bone scaffold materials have been produced from a biodegradable polymer, poly(L-lactic acid) (PLLA), and 1-10% wt of octadecylamine-functionalized nanodiamond (ND-ODA) via solution casting followed by compression molding. By comparison to pure PLLA, the addition of 10% wt of ND-ODA resulted in a significant improvement of the mechanical properties of the composite matrix, including a 280% increase in the strain at failure and a 310% increase in fracture energy in tensile tests. The biomimetic process of bonelike apatite growth on the ND-ODA/PLLA scaffolds was studied using microscopic and spectroscopic techniques. The enhanced mechanical properties and the increased mineralization capability with higher ND-ODA concentration suggest that these biodegradable composites may potentially be useful for a variety of biomedical applications, including scaffolds for orthopedic regenerative engineering.


Nature Communications | 2015

Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization

Weiwei Lei; Vadym Mochalin; Dan Liu; Si Qin; Yury Gogotsi; Ying Chen

Manufacturing of aerogels and membranes from hexagonal boron nitride (h-BN) is much more difficult than from graphene or graphene oxides because of the poor dispersibility of h-BN in water, which limits its exfoliation and preparation of colloidal solutions. Here, a simple, one-step mechano-chemical process to exfoliate and functionalize h-BN into highly water-dispersible, few-layer h-BN containing amino groups is presented. The colloidal solutions of few-layer h-BN can have unprecedentedly high concentrations, up to 30 mg ml−1, and are stable for up to several months. They can be used to produce ultralight aerogels with a density of 1.4 mg cm−3, which is ∼1,500 times less than bulk h-BN, and freestanding membranes simply by cryodrying and filtration, respectively. The material shows strong blue light emission under ultraviolet excitation, in both dispersed and dry state.


Journal of Materials Chemistry | 2014

Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media

Olha Mashtalir; Kevin M. Cook; Vadym Mochalin; Matthew C. Crowe; Michel W. Barsoum; Yury Gogotsi

Recently a large family of two-dimensional (2D) layered early transition metal carbides and carbonitrides – labelled MXene – possessing metallic conductivity and hydrophilic surfaces was discovered. Herein we report on the adsorption and photocatalytic decomposition of organic molecules in aqueous environments containing Ti3C2Tx, a representative of the MXene family. This material possesses excellent adsorption toward cationic dyes, best described by a Freundlich isotherm. We also found that the material may undergo structural changes in aqueous media.

Collaboration


Dive into the Vadym Mochalin's collaboration.

Top Co-Authors

Avatar

Yury Gogotsi

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gleb Yushin

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. P. Yaroshenko

National Academy of Sciences of Ukraine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. V. Savos'kin

National Academy of Sciences of Ukraine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Naguib

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge