Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valeria Molinero is active.

Publication


Featured researches published by Valeria Molinero.


Journal of Physical Chemistry B | 2009

Water modeled as an intermediate element between carbon and silicon.

Valeria Molinero; Emily B. Moore

Water and silicon are chemically dissimilar substances with common physical properties. Their liquids display a temperature of maximum density, increased diffusivity on compression, and they form tetrahedral crystals and tetrahedral amorphous phases. The common feature to water, silicon, and carbon is the formation of tetrahedrally coordinated units. We exploit these similarities to develop a coarse-grained model of water (mW) that is essentially an atom with tetrahedrality intermediate between carbon and silicon. mW mimics the hydrogen-bonded structure of water through the introduction of a nonbond angular dependent term that encourages tetrahedral configurations. The model departs from the prevailing paradigm in water modeling: the use of long-ranged forces (electrostatics) to produce short-ranged (hydrogen-bonded) structure. mW has only short-range interactions yet it reproduces the energetics, density and structure of liquid water, and its anomalies and phase transitions with comparable or better accuracy than the most popular atomistic models of water, at less than 1% of the computational cost. We conclude that it is not the nature of the interactions but the connectivity of the molecules that determines the structural and thermodynamic behavior of water. The speedup in computing time provided by mW makes it particularly useful for the study of slow processes in deeply supercooled water, the mechanism of ice nucleation, wetting-drying transitions, and as a realistic water model for coarse-grained simulations of biomolecules and complex materials.


Nature | 2011

Structural transformation in supercooled water controls the crystallization rate of ice

Emily B. Moore; Valeria Molinero

One of water’s unsolved puzzles is the question of what determines the lowest temperature to which it can be cooled before freezing to ice. The supercooled liquid has been probed experimentally to near the homogeneous nucleation temperature, TH ≈ 232 K, yet the mechanism of ice crystallization—including the size and structure of critical nuclei—has not yet been resolved. The heat capacity and compressibility of liquid water anomalously increase on moving into the supercooled region, according to power laws that would diverge (that is, approach infinity) at ∼225 K (refs 1, 2), so there may be a link between water’s thermodynamic anomalies and the crystallization rate of ice. But probing this link is challenging because fast crystallization prevents experimental studies of the liquid below TH. And although atomistic studies have captured water crystallization, high computational costs have so far prevented an assessment of the rates and mechanism involved. Here we report coarse-grained molecular simulations with the mW water model in the supercooled regime around TH which reveal that a sharp increase in the fraction of four-coordinated molecules in supercooled liquid water explains its anomalous thermodynamics and also controls the rate and mechanisms of ice formation. The results of the simulations and classical nucleation theory using experimental data suggest that the crystallization rate of water reaches a maximum around 225 K, below which ice nuclei form faster than liquid water can equilibrate. This implies a lower limit of metastability of liquid water just below TH and well above its glass transition temperature, 136 K. By establishing a relationship between the structural transformation in liquid water and its anomalous thermodynamics and crystallization rate, our findings also provide mechanistic insight into the observed dependence of homogeneous ice nucleation rates on the thermodynamics of water.


Physical Chemistry Chemical Physics | 2010

Freezing, melting and structure of ice in a hydrophilic nanopore

Emily B. Moore; Ezequiel de la Llave; Kai Welke; Damián A. Scherlis; Valeria Molinero

The nucleation, growth, structure and melting of ice in 3 nm diameter hydrophilic nanopores are studied through molecular dynamics simulations with the mW water model. The melting temperature of water in the pore was T(m)(pore) = 223 K, 51 K lower than the melting point of bulk water in the model and in excellent agreement with experimental determinations for 3 nm silica pores. Liquid and ice coexist in equilibrium at the melting point and down to temperatures as low as 180 K. Liquid water is located at the interface of the pore wall, increasing from one monolayer at the freezing temperature, T(f)(pore) = 195 K, to two monolayers a few degrees below T(m)(pore). Crystallization of ice in the pore occurs through homogeneous nucleation. At the freezing temperature, the critical nucleus contains approximately 75 to 100 molecules, with a radius of gyration similar to the radius of the pore. The critical nuclei contain features of both cubic and hexagonal ice, although stacking of hexagonal and cubic layers is not defined until the nuclei reach approximately 150 molecules. The structure of the confined ice is rich in stacking faults, in agreement with the interpretation of X-ray and neutron diffraction experiments. Though the presence of cubic layers is twice as prevalent as hexagonal ones, the crystals should not be considered defective Ic as sequences with more than three adjacent cubic (or hexagonal) layers are extremely rare in the confined ice.


Journal of Physical Chemistry B | 2009

Thermodynamic Stability and Growth of Guest-Free Clathrate Hydrates: A Low-Density Crystal Phase of Water

Liam C. Jacobson; Waldemar Hujo; Valeria Molinero

We use molecular dynamics simulations with the monatomic water (mW) model to investigate the phase diagram, metastability, and growth of guest-free water clathrates of structure sI and sII. At 1 atm pressure, the simulated guest-free water clathrates are metastable with respect to ice and stable with respect to the liquid up to their melting temperatures, 245+/-2 and 252+/-2 K for sI and sII, respectively. We characterize the growth of the sI and sII water crystals from supercooled water and find that the clathrates are unable to nucleate ice, the stable crystal. We computed the phase relations of ice, guest-free sII clathrate, and liquid water from -1500 to 500 atm. The resulting phase diagram indicates that empty sII may be the stable phase of water at pressures lower than approximately -1300 atm and temperatures lower than 275 K. The simulations show that, even in the region of stability of the empty clathrates, supercooled liquid water crystallizes to ice. This suggests that the barrier for nucleation of ice is lower than that for clathrates. We find no evidence for the existence of the characteristic polyhedral clathrate cages in supercooled extended water. Our results show that clathrates do not need the presence of a guest molecule to grow, but they need the guest to nucleate from liquid water. We conclude that nucleation of empty clathrates from supercooled liquid water would be extremely challenging if not impossible to attain in experiments. We propose two strategies to produce empty water clathrates in laboratory experiments at low positive pressures.


Journal of Chemical Physics | 2009

Growing correlation length in supercooled water

Emily B. Moore; Valeria Molinero

The evolution of the structure of water from the stable high temperature liquid to its glass, low-density amorphous ice (LDA), is studied through large-scale molecular dynamics simulations with the mW model [J. Phys. Chem. B 113, 4008 (2009)]. We characterize the density, translational, and orientational ordering of liquid water from the high temperature stable liquid to the low-density glass LDA at the critical cooling rate for vitrification. A continuous transition to a tetrahedrally ordered low-density liquid is observed at 50 K below the temperature of maximum density and 25 K above a temperature of minimum density. The structures of the low-density liquid and glass are consistent with that of a continuous random tetrahedral network. The liquid-liquid transformation temperature T(LL), defined by the maximum isobaric expansivity, coincides with the maximum rate of change in the local structure of water. Long-range structural fluctuations of patches of four-coordinated molecules form in the liquid. The correlation length of the four-coordinated patches in the liquid increases according to a power law in the range 300 K to T(LL)+10 K; a maximum is predicted at T(LL). To the best of our knowledge this is the first direct estimation of the Widom line of supercooled water through the analysis of structural correlations.


Nature | 2007

Vitrification of a monatomic metallic liquid

M. H. Bhat; Valeria Molinero; Emmanuel Soignard; Virgil C. Solomon; Srikanth Sastry; Jeffery L. Yarger; C. A. Angell

Although the majority of glasses in use in technology are complex mixtures of oxides or chalcogenides, there are numerous examples of pure substances—‘glassformers’—that also fail to crystallize during cooling. Most glassformers are organic molecular systems, but there are important inorganic examples too, such as silicon dioxide and elemental selenium (the latter being polymeric). Bulk metallic glasses can now be made; but, with the exception of Zr50Cu50 (ref. 4), they require multiple components to avoid crystallization during normal liquid cooling. Two-component ‘metglasses’ can often be achieved by hyperquenching, but this has not hitherto been achieved with a single-component system. Glasses form when crystal nucleation rates are slow, although the factors that create the slow nucleation conditions are not well understood. Here we apply the insights gained in a recent molecular dynamics simulation study to create conditions for successful vitrification of metallic liquid germanium. Our results also provide micrographic evidence for a rare polyamorphic transition preceding crystallization of the diamond cubic phase.


Physical Chemistry Chemical Physics | 2011

Is it cubic? Ice crystallization from deeply supercooled water.

Emily B. Moore; Valeria Molinero

Ice crystallized below 200 K has the diffraction pattern of a faulty cubic ice, and not of the most stable hexagonal ice polymorph. The origin and structure of this faulty cubic ice, presumed to form in the atmosphere, has long been a puzzle. Here we use large-scale molecular dynamics simulations with the mW water model to investigate the crystallization of water at 180 K and elucidate the development of cubic and hexagonal features in ice as it nucleates, grows and consolidates into crystallites with characteristic dimensions of a few nanometres. The simulations indicate that the ice crystallized at 180 K contains layers of cubic ice and hexagonal ice in a ratio of approximately 2 to 1. The stacks of hexagonal ice are very short, mostly one and two layers, and their frequency does not seem to follow a regular pattern. In spite of the high fraction of hexagonal layers, the diffraction pattern of the crystals is, as in the experiments, almost identical to that of cubic ice. Stacking of cubic and hexagonal layers is observed for ice nuclei with as little as 200 water molecules, but a preference for cubic ice is already well developed in ice nuclei one order of magnitude smaller: the critical ice nuclei at 180 K contain approximately ten water molecules in their core and are already rich in cubic ice. The energies of the cubic-rich and hexagonal-rich nuclei are indistinguishable, suggesting that the enrichment in cubic ice does not have a thermodynamic origin.


Journal of Physical Chemistry B | 2010

Nucleation pathways of clathrate hydrates: Effect of guest size and solubility

Liam C. Jacobson; Waldemar Hujo; Valeria Molinero

Understanding the microscopic mechanism of nucleation of clathrate hydrates is important for their use in hydrogen storage, CO(2) sequestration, storage and transport of natural gas, and the prevention of the formation of hydrate plugs in oil and gas pipelines. These applications involve hydrate guests of varied sizes and solubility in water that form different hydrate crystal structures. Nevertheless, molecular studies of the mechanism of nucleation of hydrates have focused on the single class of small hydrophobic guests that stabilize the sI crystal. In this work, we use molecular dynamics simulations with a very efficient coarse-grained model to elucidate the mechanisms of nucleation of clathrate hydrates of four model guests that span a 2 orders of magnitude range in solubility in water and that encompass sizes which stabilize each one a different hydrate structure (sI and sII, with and without occupancy of the dodecahedral cages). We find that the overall mechanism of clathrate nucleation is similar for all guests and involves a first step of formation of blobs, dense clusters of solvent-separated guest molecules that are the birthplace of the clathrate cages. Blobs of hydrophobic guests are rarer and longer-lived than those for soluble guests. For each guest, we find multiple competing channels to form the critical nuclei, filled dodecahedral (5(12)) cages, empty 5(12) cages, and a variety of filled large (5(12)6(n) with n = 2, 3, and 4) clathrate cages. Formation of empty dodecahedra is an important nucleation channel for all but the smallest guest. The empty 5(12) cages are stabilized by the presence of guests from the blob in their first solvation shell. Under conditions of high supercooling, the structure of the critical and subcritical nuclei is mainly determined by the size of the guest and does not reflect the cage composition or ordering of the stable or metastable clathrate crystals.


Journal of the American Chemical Society | 2014

Heterogeneous Nucleation of Ice on Carbon Surfaces

Laura Lupi; Arpa Hudait; Valeria Molinero

Atmospheric aerosols can promote the heterogeneous nucleation of ice, impacting the radiative properties of clouds and Earths climate. The experimental investigation of heterogeneous freezing of water droplets by carbonaceous particles reveals widespread ice freezing temperatures. It is not known which structural and chemical characteristics of soot account for the variability in ice nucleation efficiency. Here we use molecular dynamics simulations to investigate the nucleation of ice from liquid water in contact with graphitic surfaces. We find that atomically flat carbon surfaces promote heterogeneous nucleation of ice, while molecularly rough surfaces with the same hydrophobicity do not. Graphitic surfaces and other surfaces that promote ice nucleation induce layering in the interfacial water, suggesting that the order imposed by the surface on liquid water may play an important role in the heterogeneous nucleation mechanism. We investigate a large set of graphitic surfaces of various dimensions and radii of curvature and find that variations in nanostructures alone could account for the spread in the freezing temperatures of ice on soot in experiments. We conclude that a characterization of the nanostructure of soot is needed to predict its ice nucleation efficiency.


Journal of the American Chemical Society | 2012

Homogeneous nucleation of methane hydrates: unrealistic under realistic conditions.

Brandon C. Knott; Valeria Molinero; Michael F. Doherty; Baron Peters

Methane hydrates are ice-like inclusion compounds with importance to the oil and natural gas industry, global climate change, and gas transportation and storage. The molecular mechanism by which these compounds form under conditions relevant to industry and nature remains mysterious. To understand the mechanism of methane hydrate nucleation from supersaturated aqueous solutions, we performed simulations at controlled and realistic supersaturation. We found that critical nuclei are extremely large and that homogeneous nucleation rates are extremely low. Our findings suggest that nucleation of methane hydrates under these realistic conditions cannot occur by a homogeneous mechanism.

Collaboration


Dive into the Valeria Molinero's collaboration.

Top Co-Authors

Avatar

William A. Goddard

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Damián A. Scherlis

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charusita Chakravarty

Indian Institute of Technology Delhi

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge