Yuqing Qiu
University of Utah
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yuqing Qiu.
Journal of the American Chemical Society | 2017
Yuqing Qiu; Nathan Odendahl; Arpa Hudait; Ryan H. Mason; Allan K. Bertram; Francesco Paesani; Paul J. DeMott; Valeria Molinero
Heterogeneous nucleation of ice induced by organic materials is of fundamental importance for climate, biology, and industry. Among organic ice-nucleating surfaces, monolayers of long chain alcohols are particularly effective, while monolayers of fatty acids are significantly less so. As these monolayers expose to water hydroxyl groups with an order that resembles the one in the basal plane of ice, it was proposed that lattice matching between ice and the surface controls their ice-nucleating efficiency. Organic monolayers are soft materials and display significant fluctuations. It has been conjectured that these fluctuations assist in the nucleation of ice. Here we use molecular dynamic simulations and laboratory experiments to investigate the relationship between the structure and fluctuations of hydroxylated organic surfaces and the temperature at which they nucleate ice. We find that these surfaces order interfacial water to form domains with ice-like order that are the birthplace of ice. Both mismatch and fluctuations decrease the size of the preordered domains and monotonously decrease the ice freezing temperature. The simulations indicate that fluctuations depress the freezing efficiency of monolayers of alcohols or acids to half the value predicted from lattice mismatch alone. The model captures the experimental trend in freezing efficiencies as a function of chain length and predicts that alcohols have higher freezing efficiency than acids of the same chain length. These trends are mostly controlled by the modulation of the structural mismatch to ice. We use classical nucleation theory to show that the freezing efficiencies of the monolayers are directly related to their free energy of binding to ice. This study provides a general framework to relate the equilibrium thermodynamics of ice binding to a surface and the nonequilibrium ice freezing temperature and suggests that these could be predicted from the structure of interfacial water.
Journal of the American Chemical Society | 2015
Yuqing Qiu; Valeria Molinero
The morphology of liquid-liquid phase separated aerosols has a strong impact on their rate of gas and water uptake, and the type and rate of heterogeneous reactions in the atmosphere. However, it is extremely challenging to experimentally distinguish different morphologies (core-shell or partial wetting) of aerosols and to quantify the extent of wetting between the two phases. The aim of this work is to quantitatively predict the morphology of liquid-liquid aerosols from fundamental physical properties of the aerosol phases. We determine the equilibrium structure of liquid-liquid phase separated aerosols through free energy minimization and predict that the contact angle between the two liquids in the aerosol depends on the composition but not the amount of each phase. We demonstrate that for aerosols of diameter larger than ∼100 nm, the equilibrium contact angle can be accurately predicted from the surface tensions of each liquid with the vapor and between the two liquids through an expression that is identical to Youngs equation. The internal structure of smaller, ultrafine aerosols depends also on the value of the line tension between the two liquids and the vapor. The thermodynamic model accurately predicts the experimental morphology, core-shell or partial wetting, of all aerosols for which surface tensions are provided in the literature, and provides contact angles that cannot be accurately determined with state of the art experimental methods. We find that the contact angle of model atmospheric aerosols is rarely higher than 30°. We validate the thermodynamic predictions through molecular simulations of nonane-water droplets, and use the simulation data to compute line tension values that are in good agreement with theory and the analysis from experimental data in water-nonane droplets. Our finding of a simple analytical equation to compute the contact angle of liquid-liquid droplets should have broad application for the prediction of the morphology of two-phase atmospheric aerosols and its impact in their chemistry.
Journal of the American Chemical Society | 2018
Arpa Hudait; Nathan Odendahl; Yuqing Qiu; Francesco Paesani; Valeria Molinero
Cold-adapted organisms produce antifreeze and ice-nucleating proteins to prevent and promote ice formation. The crystal structure of hyperactive bacterial antifreeze protein (AFP) MpAFP suggests that this protein binds ice through an anchored clathrate motif. It is not known whether other hyperactive AFPs and ice-nucleating proteins (INPs) use the same motif to recognize or nucleate ice. Here we use molecular simulations to elucidate the ice-binding motifs of hyperactive insect AFPs and a model INP of Pseudomonas syringae. We find that insect AFPs recognize ice through anchored clathrate motifs distinct from that of MpAFP. By performing simulations of ice nucleation by PsINP, we identify two distinct ice-binding sites on opposite sides of the β-helix. The ice-nucleating sequences identified in the simulations agree with those previously proposed for the closely related INP of Pseudomonas borealis based on the structure of the protein. The simulations indicate that these sites have comparable ice-nucleating efficiency, but distinct binding motifs, controlled by the amino acid sequence: one is an anchored clathrate and the other ice-like. We conclude that anchored clathrate and ice-like motifs can be equally effective for binding proteins to ice and promoting ice nucleation.
Journal of Physical Chemistry Letters | 2017
Laura Lupi; Rebecca Hanscam; Yuqing Qiu; Valeria Molinero
The control of assembly and crystallization of molecules is becoming increasingly important in chemistry, engineering, and materials sciences. Crystallization is also central to understand natural processes that include the formation of atmospheric ice and biomineralization. Organic surfaces, biomolecules, and even liquid/vapor interfaces can promote the nucleation of crystals. These soft surfaces present significant structural fluctuations, which have been shown to strongly impact the rate of crystallization. This raises the question of whether degrees of freedom of soft surfaces play a role in the reaction coordinate for crystal nucleation. Here we use molecular simulations to investigate the mechanism of ice nucleation promoted by an alcohol monolayer. Our analysis indicates that while the flexibility of the surface strongly depresses its ice nucleation ability, it does not play a role in the coordinate that controls the transformation from liquid to ice. We find that the variable that drives the transformation is the size of the crystalline cluster, the same as that for the homogeneous crystallization. We argue that this is a general result that arises from the separation of time scales between surface fluctuations and the crossing of the transition state barrier for crystallization.
Journal of the American Chemical Society | 2017
Kenji Mochizuki; Yuqing Qiu; Valeria Molinero
Atmospheric aerosols nucleate ice in clouds, strongly impacting precipitation and climate. The prevailing consensus is that ice nucleation is promoted heterogeneously by the surface of ice nucleating particles in the aerosols. However, recent experiments indicate that water-soluble molecules, such as polysaccharides of pollen and poly(vinyl alcohol) (PVA), increase the ice freezing temperature. This poses the question of how do flexible soluble molecules promote the formation of water crystals, as they do not expose a well-defined surface to ice. Here we use molecular simulations to demonstrate that PVA promotes ice nucleation through a homogeneous mechanism: PVA increases the nucleation rate by destabilizing water in the solution. This work demonstrates a novel paradigm for understanding ice nucleation by soluble molecules and provides a new handle to design additives that promote crystallization.
Proceedings of the National Academy of Sciences of the United States of America | 2018
Arpa Hudait; Daniel R. Moberg; Yuqing Qiu; Nathan Odendahl; Francesco Paesani; Valeria Molinero
Significance Antifreeze proteins have evolved to inhibit ice growth in organisms living at subfreezing temperatures; the mechanism by which these proteins recognize and bind ice is not understood. It has been proposed that antifreeze proteins recognize ice by preordering water at the ice-binding site already in solution. Here we use multiresolution molecular simulations to demonstrate that preordering of interfacial water is not needed for ice recognition by antifreeze proteins. We predict that preordering could emerge on the large ice-binding surfaces of aggregates of ice-nucleating proteins, where it may assist with ice nucleation. Antifreeze proteins (AFPs) inhibit ice growth in organisms living in cold environments. Hyperactive insect AFPs are particularly effective, binding ice through “anchored clathrate” motifs. It has been hypothesized that the binding of hyperactive AFPs to ice is facilitated by preordering of water at the ice-binding site (IBS) of the protein in solution. The antifreeze protein TmAFP displays the best matching of its binding site to ice, making it the optimal candidate to develop ice-like order in solution. Here we use multiresolution simulations to unravel the mechanism by which TmAFP recognizes and binds ice. We find that water at the IBS of the antifreeze protein in solution does not acquire ice-like or anchored clathrate-like order. Ice recognition occurs by slow diffusion of the protein to achieve the proper orientation with respect to the ice surface, followed by fast collective organization of the hydration water at the IBS to form an anchored clathrate motif that latches the protein to the ice surface. The simulations suggest that anchored clathrate order could develop on the large ice-binding surfaces of aggregates of ice-nucleating proteins (INP). We compute the infrared and Raman spectra of water in the anchored clathrate motif. The signatures of the OH stretch of water in the anchored clathrate motif can be distinguished from those of bulk liquid in the Raman spectra, but not in the infrared spectra. We thus suggest that Raman spectroscopy may be used to probe the anchored clathrate order at the ice-binding surface of INP aggregates.
Journal of Physical Chemistry Letters | 2018
Pavithra Madhavi Naullage; Yuqing Qiu; Valeria Molinero
Cold-adapted organisms produce antifreeze proteins and glycoproteins to control the growth, melting and recrystallization of ice. It has been proposed that these molecules pin the crystal surface, creating a curvature that arrests the growth and melting of the crystal. Here we use thermodynamic modeling and molecular simulations to demonstrate that the curvature of the superheated or supercooled surface depends on the temperature and distances between ice-binding molecules, but not the details of their interactions with ice. We perform simulations of ice pinned with the antifreeze protein TmAFP, polyvinyl alcohol with different degrees of polymerization, and model ice-binding molecules to determine the thermal hystereses on melting and freezing, i.e. the maximum curvature that can be attained before, respectively, ice melts or grows irreversibly over the ice-binding molecules. We find that the thermal hysteresis is controlled by the bulkiness of the ice-binding molecules and their footprint at the ice surface. We elucidate the origin of the asymmetry between freezing and melting hysteresis found in experiments and propose guidelines to design synthetic antifreeze molecules with potent thermal hysteresis activity.
Journal of Physical Chemistry B | 2018
Yuqing Qiu; Laura Lupi; Valeria Molinero
Graphitic surfaces are the main component of soot, a major constituent of atmospheric aerosols. Experiments indicate that soots of different origins display a wide range of abilities to heterogeneously nucleate ice. The ability of pure graphite to nucleate ice in experiments, however, seems to be almost negligible. Nevertheless, molecular simulations with the monatomic water model mW with water-carbon interactions parameterized to reproduce the experimental contact angle of water on graphite predict that pure graphite nucleates ice. According to classical nucleation theory, the ability of a surface to nucleate ice is controlled by the binding free energy between ice immersed in liquid water and the surface. To establish whether the discrepancy in freezing efficiencies of graphite in mW simulations and experiments arises from the coarse resolution of the model or can be fixed by reparameterization, it is important to elucidate the contributions of the water-graphite, water-ice, and ice-water interfaces to the free energy, enthalpy, and entropy of binding for both water and the model. Here we use thermodynamic analysis and free energy calculations to determine these interfacial properties. We demonstrate that liquid water at the graphite interface is not ice-like or vapor-like: it has similar free energy, entropy, and enthalpy as water in the bulk. The thermodynamics of the water-graphite interface is well reproduced by the mW model. We find that the entropy of binding between graphite and ice is positive and dominated, in both experiments and simulations, by the favorable entropy of reducing the ice-water interface. Our analysis indicates that the discrepancy in freezing efficiencies of graphite in experiments and the simulations with mW arises from the inability of the model to simultaneously reproduce the contact angle of liquid water on graphite and the free energy of the ice-graphite interface. This transferability issue is intrinsic to the resolution of the model, and arises from its lack of rotational degrees of freedom.
Environmental Science: Processes & Impacts | 2018
Paul J. DeMott; Ryan H. Mason; Christina S. McCluskey; Thomas C. J. Hill; Russell J. Perkins; Yury N. Desyaterak; Allan K. Bertram; Jonathan V. Trueblood; Vicki H. Grassian; Yuqing Qiu; Valeria Molinero; Yutaka Tobo; Camille M. Sultana; Christopher Lee; Kimberley A Prather
Heterogeneous ice nucleation in the atmosphere regulates cloud properties, such as phase (ice versus liquid) and lifetime. Aerosol particles of marine origin are relevant ice nucleating particle sources when marine aerosol layers are lifted over mountainous terrain and in higher latitude ocean boundary layers, distant from terrestrial aerosol sources. Among many particle compositions associated with ice nucleation by sea spray aerosols are highly saturated fatty acids. Previous studies have not demonstrated their ability to freeze dilute water droplets. This study investigates ice nucleation by monolayers at the surface of supercooled droplets and as crystalline particles at temperatures exceeding the threshold for homogeneous freezing. Results show the poor efficiency of long chain fatty acid (C16, C18) monolayers in templating freezing of pure water droplets and seawater subphase to temperatures of at least -30 °C, consistent with theory. This contrasts with freezing of fatty alcohols (C22 used here) at nearly 20 °C warmer. Evaporation of μL-sized droplets to promote structural compression of a C19 acid monolayer did not favor warmer ice formation of drops. Heterogeneous ice nucleation occurred for nL-sized droplets condensed on 5 to 100 μm crystalline particles of fatty acid (C12 to C20) at a range of temperatures below -28 °C. These experiments suggest that fatty acids nucleate ice at warmer than -36 °C only when the crystalline phase is present. Rough estimates of ice active site densities are consistent with those of marine aerosols, but require knowledge of the proportion of surface area comprised of fatty acids for application.
Journal of Chemical Theory and Computation | 2014
Jibao Lu; Yuqing Qiu; Riccardo Baron; Valeria Molinero