Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vasilis J. Promponas is active.

Publication


Featured researches published by Vasilis J. Promponas.


Autophagy | 2014

iLIR: A web resource for prediction of Atg8-family interacting proteins

Ioanna Kalvari; Stelios Tsompanis; Nitha C. Mulakkal; Richard Osgood; Terje Johansen; Ioannis P. Nezis; Vasilis J. Promponas

Macroautophagy was initially considered to be a nonselective process for bulk breakdown of cytosolic material. However, recent evidence points toward a selective mode of autophagy mediated by the so-called selective autophagy receptors (SARs). SARs act by recognizing and sorting diverse cargo substrates (e.g., proteins, organelles, pathogens) to the autophagic machinery. Known SARs are characterized by a short linear sequence motif (LIR-, LRS-, or AIM-motif) responsible for the interaction between SARs and proteins of the Atg8 family. Interestingly, many LIR-containing proteins (LIRCPs) are also involved in autophagosome formation and maturation and a few of them in regulating signaling pathways. Despite recent research efforts to experimentally identify LIRCPs, only a few dozen of this class of-often unrelated-proteins have been characterized so far using tedious cell biological, biochemical, and crystallographic approaches. The availability of an ever-increasing number of complete eukaryotic genomes provides a grand challenge for characterizing novel LIRCPs throughout the eukaryotes. Along these lines, we developed iLIR, a freely available web resource, which provides in silico tools for assisting the identification of novel LIRCPs. Given an amino acid sequence as input, iLIR searches for instances of short sequences compliant with a refined sensitive regular expression pattern of the extended LIR motif (xLIR-motif) and retrieves characterized protein domains from the SMART database for the query. Additionally, iLIR scores xLIRs against a custom position-specific scoring matrix (PSSM) and identifies potentially disordered subsequences with protein interaction potential overlapping with detected xLIR-motifs. Here we demonstrate that proteins satisfying these criteria make good LIRCP candidates for further experimental verification. Domain architecture is displayed in an informative graphic, and detailed results are also available in tabular form. We anticipate that iLIR will assist with elucidating the full complement of LIRCPs in eukaryotes.Macroautophagy was initially considered to be a nonselective process for bulk breakdown of cytosolic material. However, recent evidence points toward a selective mode of autophagy mediated by the so-called selective autophagy receptors (SARs). SARs act by recognizing and sorting diverse cargo substrates (e.g., proteins, organelles, pathogens) to the autophagic machinery. Known SARs are characterized by a short linear sequence motif (LIR-, LRS-, or AIM-motif) responsible for the interaction between SARs and proteins of the Atg8 family. Interestingly, many LIR-containing proteins (LIRCPs) are also involved in autophagosome formation and maturation and a few of them in regulating signaling pathways. Despite recent research efforts to experimentally identify LIRCPs, only a few dozen of this class of—often unrelated—proteins have been characterized so far using tedious cell biological, biochemical, and crystallographic approaches. The availability of an ever-increasing number of complete eukaryotic genomes provides a grand challenge for characterizing novel LIRCPs throughout the eukaryotes. Along these lines, we developed iLIR, a freely available web resource, which provides in silico tools for assisting the identification of novel LIRCPs. Given an amino acid sequence as input, iLIR searches for instances of short sequences compliant with a refined sensitive regular expression pattern of the extended LIR motif (xLIR-motif) and retrieves characterized protein domains from the SMART database for the query. Additionally, iLIR scores xLIRs against a custom position-specific scoring matrix (PSSM) and identifies potentially disordered subsequences with protein interaction potential overlapping with detected xLIR-motifs. Here we demonstrate that proteins satisfying these criteria make good LIRCP candidates for further experimental verification. Domain architecture is displayed in an informative graphic, and detailed results are also available in tabular form. We anticipate that iLIR will assist with elucidating the full complement of LIRCPs in eukaryotes.


Nucleic Acids Research | 2004

PRED-GPCR: GPCR recognition and family classification server

Panagiotis K Papasaikas; Pantelis G. Bagos; Zoi I. Litou; Vasilis J. Promponas; Stavros J. Hamodrakas

The vast cell-surface receptor family of G-protein coupled receptors (GPCRs) is the focus of both academic and pharmaceutical research due to their key role in cell physiology along with their amenability to drug intervention. As the data flow rate from the various genome and proteome projects continues to grow, so does the need for fast, automated and reliable screening for new members of the various GPCR families. PRED-GPCR is a free Internet service for GPCR recognition and classification at the family level. A submitted sequence or set of sequences, is queried against the PRED-GPCR library, housing 265 signature profile HMMs corresponding to 67 well-characterized GPCR families. Users query the server through a web interface and results are presented in HTML output format. The server returns all single-motif matches along with the combined results for the corresponding families. The service is available online since October 2003 at http://bioinformatics.biol.uoa.gr/PRED-GPCR.


Pattern Recognition | 2008

Clustering of biological time series by cepstral coefficients based distances

Alexios Savvides; Vasilis J. Promponas; Konstantinos Fokianos

Clustering of stationary time series has become an important tool in many scientific applications, like medicine, finance, etc. Time series clustering methods are based on the calculation of suitable similarity measures which identify the distance between two or more time series. These measures are either computed in the time domain or in the spectral domain. Since the computation of time domain measures is rather cumbersome we resort to spectral domain methods. A new measure of distance is proposed and it is based on the so-called cepstral coefficients which carry information about the log spectrum of a stationary time series. These coefficients are estimated by means of a semiparametric model which assumes that the log-likelihood ratio of two or more unknown spectral densities has a linear parametric form. After estimation, the estimated cepstral distance measure is given as an input to a clustering method to produce the disjoint groups of data. Simulated examples show that the method yields good results, even when the processes are not necessarily linear. These cepstral-based clustering algorithms are applied to biological time series. In particular, the proposed methodology effectively identifies distinct and biologically relevant classes of amino acid sequences with the same physicochemical properties, such as hydrophobicity.


Autophagy | 2016

iLIR database: A web resource for LIR motif-containing proteins in eukaryotes

Anne-Claire Jacomin; Siva Samavedam; Vasilis J. Promponas; Ioannis P. Nezis

ABSTRACT Atg8-family proteins are the best-studied proteins of the core autophagic machinery. They are essential for the elongation and closure of the phagophore into a proper autophagosome. Moreover, Atg8-family proteins are associated with the phagophore from the initiation of the autophagic process to, or just prior to, the fusion between autophagosomes with lysosomes. In addition to their implication in autophagosome biogenesis, they are crucial for selective autophagy through their ability to interact with selective autophagy receptor proteins necessary for the specific targeting of substrates for autophagic degradation. In the past few years it has been revealed that Atg8-interacting proteins include not only receptors but also components of the core autophagic machinery, proteins associated with vesicles and their transport, and specific proteins that are selectively degraded by autophagy. Atg8-interacting proteins contain a short linear LC3-interacting region/LC3 recognition sequence/Atg8-interacting motif (LIR/LRS/AIM) motif which is responsible for their interaction with Atg8-family proteins. These proteins are referred to as LIR-containing proteins (LIRCPs). So far, many experimental efforts have been carried out to identify new LIRCPs, leading to the characterization of some of them in the past 10 years. Given the need for the identification of LIRCPs in various organisms, we developed the iLIR database (https://ilir.warwick.ac.uk) as a freely available web resource, listing all the putative canonical LIRCPs identified in silico in the proteomes of 8 model organisms using the iLIR server, combined with a Gene Ontology (GO) term analysis. Additionally, a curated text-mining analysis of the literature permitted us to identify novel putative LICRPs in mammals that have not previously been associated with autophagy.


BMC Genomics | 2009

Gene socialization: gene order, GC content and gene silencing in Salmonella

Nikolas Papanikolaou; Kalliopi Trachana; Theodosios Theodosiou; Vasilis J. Promponas; Ioannis Iliopoulos

BackgroundGenes of conserved order in bacterial genomes tend to evolve slower than genes whose order is not conserved. In addition, genes with a GC content lower than the GC content of the resident genome are known to be selectively silenced by the histone-like nucleoid structuring protein (H-NS) in Salmonella.ResultsIn this study, we use a comparative genomics approach to demonstrate that in Salmonella, genes whose order is not conserved (or genes without homologs) in closely related bacteria possess a significantly lower average GC content in comparison to genes that preserve their relative position in the genome. Moreover, these genes are more frequently targeted by H-NS than genes that have conserved their genomic neighborhood. We also observed that duplicated genes that do not preserve their genomic neighborhood are, on average, under less selective pressure.ConclusionsWe establish a strong association between gene order, GC content and gene silencing in a model bacterial species. This analysis suggests that genes that are not under strong selective pressure (evolve faster than others) in Salmonella tend to accumulate more AT-rich mutations and are eventually silenced by H-NS. Our findings may establish new approaches for a better understanding of bacterial genome evolution and function, using information from functional and comparative genomics.


Scientific Reports | 2015

Functional Genomics Evidence Unearths New Moonlighting Roles of Outer Ring Coat Nucleoporins

Katerina R. Katsani; Manuel Irimia; Christos Karapiperis; Zacharias G. Scouras; Benjamin J. Blencowe; Vasilis J. Promponas; Christos A. Ouzounis

There is growing evidence for the involvement of Y-complex nucleoporins (Y-Nups) in cellular processes beyond the inner core of nuclear pores of eukaryotes. To comprehensively assess the range of possible functions of Y-Nups, we delimit their structural and functional properties by high-specificity sequence profiles and tissue-specific expression patterns. Our analysis establishes the presence of Y-Nups across eukaryotes with novel composite domain architectures, supporting new moonlighting functions in DNA repair, RNA processing, signaling and mitotic control. Y-Nups associated with a select subset of the discovered domains are found to be under tight coordinated regulation across diverse human and mouse cell types and tissues, strongly implying that they function in conjunction with the nuclear pore. Collectively, our results unearth an expanded network of Y-Nup interactions, thus supporting the emerging view of the Y-complex as a dynamic protein assembly with diverse functional roles in the cell.


Briefings in Bioinformatics | 2014

Experimental evidence validating the computational inference of functional associations from gene fusion events: a critical survey

Vasilis J. Promponas; Christos A. Ouzounis; Ioannis Iliopoulos

More than a decade ago, a number of methods were proposed for the inference of protein interactions, using whole-genome information from gene clusters, gene fusions and phylogenetic profiles. This structural and evolutionary view of entire genomes has provided a valuable approach for the functional characterization of proteins, especially those without sequence similarity to proteins of known function. Furthermore, this view has raised the real possibility to detect functional associations of genes and their corresponding proteins for any entire genome sequence. Yet, despite these exciting developments, there have been relatively few cases of real use of these methods outside the computational biology field, as reflected from citation analysis. These methods have the potential to be used in high-throughput experimental settings in functional genomics and proteomics to validate results with very high accuracy and good coverage. In this critical survey, we provide a comprehensive overview of 30 most prominent examples of single pairwise protein interaction cases in small-scale studies, where protein interactions have either been detected by gene fusion or yielded additional, corroborating evidence from biochemical observations. Our conclusion is that with the derivation of a validated gold-standard corpus and better data integration with big experiments, gene fusion detection can truly become a valuable tool for large-scale experimental biology.


FEBS Letters | 1999

Reproducibility in genome sequence annotation: the Plasmodium falciparum chromosome 2 case

Sophia Tsoka; Vasilis J. Promponas; Christos A. Ouzounis

With the recent publication of the complete sequence of the Plasmodium falciparum chromosome 2, an additional step towards the understanding of the biology of this important human pathogen has been made [1]. Hopefully, the genome sequence will provide a basis for further study and the possible identi¢cation of targets for drug and vaccine development. This project follows the model of eukaryotic genome sequencing, one complete chromosomal sequence at a time, which was initiated with the yeast chromosome III [2,3]. Progress has been made by developing systems that perform automated genome sequence annotation and can further accelerate the experimental analysis [4]. Yet, computational genomics still depend on the insight of the analysis teams and loosely used terminology, despite the fact that biological research requires strict protocols and method speci¢cations.


Standards in Genomic Sciences | 2015

Annotation inconsistencies beyond sequence similarity-based function prediction – phylogeny and genome structure

Vasilis J. Promponas; Ioannis Iliopoulos; Christos A. Ouzounis

The function annotation process in computational biology has increasingly shifted from the traditional characterization of individual biochemical roles of protein molecules to the system-wide detection of entire metabolic pathways and genomic structures. The so-called genome-aware methods broaden misannotation inconsistencies in genome sequences beyond protein function assignments, encompassing phylogenetic anomalies and artifactual genomic regions. We outline three categories of error propagation in databases by providing striking examples – at various levels of appreciation by the community from traditional to emerging, thus raising awareness for future solutions.


Integration | 2013

FPGA-based hardware acceleration for local complexity analysis of massive genomic data

Agathoklis Papadopoulos; Ioannis Kirmitzoglou; Vasilis J. Promponas; Theocharis Theocharides

While genomics have significantly advanced modern biological achievements, it requires extensive computational power, traditionally employed on large-scale cluster machines as well as multi-core systems. However, emerging research results show that FPGA-based acceleration of algorithms for genomic applications greatly improves the performance and energy efficiency when compared to multi-core systems and clusters. In this work, we present a parallel, hardware acceleration architecture of the CAST (Complexity Analysis of Sequence Tracts) algorithm, employed by biologists for complexity analysis of protein sequences encoded in genomic data. CAST is used for detecting (and subsequently masking) low-complexity regions (LCRs) in protein sequences. We designed and implemented the CAST accelerator architecture and built an FPGA prototype, with the purpose of benchmarking its performance against serial and multithreaded implementations of the CAST algorithm in software. The proposed architecture achieves remarkable speedup compared to both serial and multithreaded software CAST implementations ranging from approx. 100x-5000x, depending on the system configuration and the dataset features, such as low-complexity content and sequence length distribution. Such performance may enable complex analyses of voluminous sequence datasets, and has the potential to interoperate with other hardware architectures for protein sequence analysis.

Collaboration


Dive into the Vasilis J. Promponas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stavros J. Hamodrakas

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar

Christos A. Ouzounis

Artificial Intelligence Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge