Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michalis Agathocleous is active.

Publication


Featured researches published by Michalis Agathocleous.


Nature | 2015

Oxidative stress inhibits distant metastasis by human melanoma cells

Elena Piskounova; Michalis Agathocleous; Malea M. Murphy; Zeping Hu; Sara E. Huddlestun; Zhiyu Zhao; A. Marilyn Leitch; Timothy M. Johnson; Ralph J. DeBerardinis; Sean J. Morrison

Solid cancer cells commonly enter the blood and disseminate systemically, but are highly inefficient at forming distant metastases for poorly understood reasons. Here we studied human melanomas that differed in their metastasis histories in patients and in their capacity to metastasize in NOD-SCID-Il2rg−/− (NSG) mice. We show that melanomas had high frequencies of cells that formed subcutaneous tumours, but much lower percentages of cells that formed tumours after intravenous or intrasplenic transplantation, particularly among inefficiently metastasizing melanomas. Melanoma cells in the blood and visceral organs experienced oxidative stress not observed in established subcutaneous tumours. Successfully metastasizing melanomas underwent reversible metabolic changes during metastasis that increased their capacity to withstand oxidative stress, including increased dependence on NADPH-generating enzymes in the folate pathway. Antioxidants promoted distant metastasis in NSG mice. Folate pathway inhibition using low-dose methotrexate, ALDH1L2 knockdown, or MTHFD1 knockdown inhibited distant metastasis without significantly affecting the growth of subcutaneous tumours in the same mice. Oxidative stress thus limits distant metastasis by melanoma cells in vivo.


Annual Review of Cell and Developmental Biology | 2009

From Progenitors to Differentiated Cells in the Vertebrate Retina

Michalis Agathocleous; William A. Harris

Multipotent retinal progenitors undergo a varied number of divisions to produce clones of heterogeneous sizes and cell types. We describe the transition from a proliferating progenitor to a differentiated postmitotic cell and discuss how controls of proliferation operate within individual cells as well as in the whole tissue. We discuss how extracellular and intracellular signaling, transcriptional regulation, cell cycle kinetics, interkinetic nuclear migration, orientation of cell division, and epigenetic modifications all interact to regulate a progenitors transition from division to differentiation. We also propose some directions for future research.


Trends in Cell Biology | 2013

Metabolism in physiological cell proliferation and differentiation

Michalis Agathocleous; William A. Harris

Stem and progenitor cells proliferate and give rise to other types of cells through differentiation. Deregulation of this process can lead to many diseases including cancer. Recent evidence suggests that an extensive metabolic reconfiguration of cancer cells allows them to sustain pathological growth by providing anabolic intermediates for biosynthesis. This raises the question of the physiological role of metabolic pathways during normal cell growth and differentiation. Metabolism changes with differentiation, and metabolic pathways may be controlled by the same signals that control cell proliferation and differentiation. However, metabolism could also reciprocally influence these signals. The role of metabolic regulation may extend beyond the provision of intermediates for the biosynthetic needs of proliferation, to affect cell differentiation. Here we bring together a large number of recent studies that support this suggestion and illustrate some of the mechanisms by which metabolism is linked to cell proliferation and differentiation.


Development | 2009

A directional Wnt/β-catenin-Sox2-proneural pathway regulates the transition from proliferation to differentiation in the Xenopus retina

Michalis Agathocleous; Ilina Iordanova; Minde I. Willardsen; Xiao Yan Xue; Monica L. Vetter; William A. Harris; Kathryn B. Moore

Progenitor cells in the central nervous system must leave the cell cycle to become neurons and glia, but the signals that coordinate this transition remain largely unknown. We previously found that Wnt signaling, acting through Sox2, promotes neural competence in the Xenopus retina by activating proneural gene expression. We now report that Wnt and Sox2 inhibit neural differentiation through Notch activation. Independently of Sox2, Wnt stimulates retinal progenitor proliferation and this, when combined with the block on differentiation, maintains retinal progenitor fates. Feedback inhibition by Sox2 on Wnt signaling and by the proneural transcription factors on Sox2 mean that each element of the core pathway activates the next element and inhibits the previous one, providing a directional network that ensures retinal cells make the transition from progenitors to neurons and glia.


Nature Cell Biology | 2012

Metabolic differentiation in the embryonic retina

Michalis Agathocleous; Nicola K. Love; Owen Randlett; Julia J. Harris; Jinyue Liu; Andrew J. Murray; William A. Harris

Unlike healthy adult tissues, cancers produce energy mainly by aerobic glycolysis instead of oxidative phosphorylation. This adaptation, called the Warburg effect, may be a feature of all dividing cells, both normal and cancerous, or it may be specific to cancers. It is not known whether, in a normally growing tissue during development, proliferating and postmitotic cells produce energy in fundamentally different ways. Here we show in the embryonic Xenopus retina in vivo, that dividing progenitor cells depend less on oxidative phosphorylation for ATP production than non-dividing differentiated cells, and instead use glycogen to fuel aerobic glycolysis. The transition from glycolysis to oxidative phosphorylation is connected to the cell differentiation process. Glycolysis is indispensable for progenitor proliferation and biosynthesis, even when it is not used for ATP production. These results suggest that the Warburg effect can be a feature of normal proliferation in vivo, and that the regulation of glycolysis and oxidative phosphorylation is critical for normal development.Unlike healthy adult tissues, cancers produce energy mainly by aerobic glycolysis instead of oxidative phosphorylation. This adaptation, called the Warburg effect, may be a feature of all dividing cells, both normal and cancerous, or it may be specific to cancers. It is not known whether, in a normally growing tissue during development, proliferating and postmitotic cells produce energy in fundamentally different ways. Here we show in the embryonic Xenopus retina in vivo, that dividing progenitor cells depend less on oxidative phosphorylation for ATP production than non-dividing differentiated cells, and instead use glycogen to fuel aerobic glycolysis. The transition from glycolysis to oxidative phosphorylation is connected to the cell differentiation process. Glycolysis is indispensable for progenitor proliferation and biosynthesis, even when it is not used for ATP production. These results suggest that the Warburg effect can be a feature of normal proliferation in vivo, and that the regulation of glycolysis and oxidative phosphorylation is critical for normal development.


Cell Cycle | 2007

A General Role of Hedgehog in the Regulation of Proliferation

Michalis Agathocleous; Morgane Locker; William A. Harris; Muriel Perron

The Hedgehog (Hh) pathway regulates proliferation in a variety of tissues, however its specific effects on the cell cycle are unclear. During retinal proliferation in particular, the role of Hh has been controversial, with studies variably suggesting a stimulatory or an inhibitory effect on proliferation. Our recent data provide an underlying mechanism, which reconciles these different views. We showed that Hh signaling in the retina accelerates the G1 and G2 phases of the cell cycle and then pushes these rapidly dividing cells out of the cell cycle prematurely. From this and other evidence, we propose that Hh converts quiescent retinal stem cells into fast-cycling transient amplifying progenitors that are closer to cell cycle exit and differentiation. This is, we suggest, likely to be a general role of Hh in the nervous system and other tissues. This function of Hh in cell cycle kinetics and cell cycle exit may have implications for tumorigenesis and brain evolution.


Nature | 2017

Ascorbate regulates haematopoietic stem cell function and leukaemogenesis

Michalis Agathocleous; Corbin E. Meacham; Rebecca J. Burgess; Elena Piskounova; Zhiyu Zhao; Genevieve M. Crane; Brianna L. Cowin; Emily Bruner; Malea M. Murphy; Weina Chen; Gerald J. Spangrude; Zeping Hu; Ralph J. DeBerardinis; Sean J. Morrison

Stem-cell fate can be influenced by metabolite levels in culture, but it is not known whether physiological variations in metabolite levels in normal tissues regulate stem-cell function in vivo. Here we describe a metabolomics method for the analysis of rare cell populations isolated directly from tissues and use it to compare mouse haematopoietic stem cells (HSCs) to restricted haematopoietic progenitors. Each haematopoietic cell type had a distinct metabolic signature. Human and mouse HSCs had unusually high levels of ascorbate, which decreased with differentiation. Systemic ascorbate depletion in mice increased HSC frequency and function, in part by reducing the function of Tet2, a dioxygenase tumour suppressor. Ascorbate depletion cooperated with Flt3 internal tandem duplication (Flt3ITD) leukaemic mutations to accelerate leukaemogenesis, through cell-autonomous and possibly non-cell-autonomous mechanisms, in a manner that was reversed by dietary ascorbate. Ascorbate acted cell-autonomously to negatively regulate HSC function and myelopoiesis through Tet2-dependent and Tet2-independent mechanisms. Ascorbate therefore accumulates within HSCs to promote Tet activity in vivo, limiting HSC frequency and suppressing leukaemogenesis.


Journal of Internal Medicine | 2014

Metabolic regulation of stem cell function.

Rebecca J. Burgess; Michalis Agathocleous; Sean J. Morrison

Stem cell function is regulated by intrinsic mechanisms, such as transcriptional and epigenetic regulators, as well as extrinsic mechanisms, such as short‐range signals from the niche and long‐range humoral signals. Interactions between these regulatory mechanisms and cellular metabolism are just beginning to be identified. In multiple systems, differentiation is accompanied by changes in glycolysis, oxidative phosphorylation and the levels of reactive oxygen species. Indeed, metabolic pathways regulate proliferation and differentiation by regulating energy production and the generation of substrates for biosynthetic pathways. Some metabolic pathways appear to function differently in stem cells as compared with restricted progenitors and differentiated cells. They also appear to influence stem cell function by regulating signal transduction, epigenetic marks and oxidative stress. Studies to date illustrate the importance of metabolism in the regulation of stem cell function and suggest complex cross‐regulation likely exists between metabolism and other stem cell regulatory mechanisms.


Development | 2014

A nutrient-sensitive restriction point is active during retinal progenitor cell differentiation.

Nicola K. Love; Nandaki Keshavan; Rebecca Lewis; William A. Harris; Michalis Agathocleous

In many growing tissues, slowly dividing stem cells give rise to rapidly proliferating progenitors that eventually exit the cell cycle and differentiate. Growth rates are limited by nutrient availability, but it is unclear which steps of the proliferation-differentiation programme are particularly sensitive to fuel supplies. We examined how nutrient deprivation (ND) affects stem and progenitor cells in the ciliary marginal zone (CMZ) of the amphibian retina, a well-characterised neurogenic niche. We show that ND specifically blocks the proliferation and differentiation of progenitor cells through an mTOR-mediated mechanism. By contrast, the identity and proliferation of retinal stem cells are insensitive to ND and mTOR inhibition. Re-feeding starved retinas in vitro rescues both proliferation and differentiation, and activation of mTOR is sufficient to stimulate differentiation even in ND retinas. These results suggest that an mTOR-mediated restriction point operates in vivo to couple nutrient abundance to the proliferation and differentiation programme in retinal progenitor cells.


Molecular Cancer Research | 2016

Abstract IA08: Oxidative stress inhibits distant metastasis by human melanoma cells

Elena Piskounova; Michalis Agathocleous; Ralph J. DeBerardinis; Sean J. Morrison

Solid cancer cells commonly enter the blood and disseminate systemically but are highly inefficient at forming distant metastases for poorly understood reasons. We studied human melanomas that differed in their metastasis histories in patients and in their capacity to metastasize in NSG mice. All melanomas had high frequencies of cells that formed subcutaneous tumors, but much lower percentages of cells that formed tumors after intravenous or intrasplenic transplantation, particularly among inefficient metastasizers. Melanoma cells in the blood and visceral organs experienced oxidative stress not observed in established subcutaneous tumors. Successfully metastasizing melanomas underwent reversible metabolic changes during metastasis that increased their capacity to withstand oxidative stress, including increased dependence upon NADPH-generating enzymes in the folate pathway. Anti-oxidants promoted distant metastasis in NSG mice. Folate pathway inhibition using low-dose methotrexate, ALDH1L2 knockdown, or MTHFD1 knockdown inhibited distant metastasis without significantly affecting the growth of subcutaneous tumors in the same mice. Oxidative stress thus limits distant metastasis by melanoma cells in vivo. Citation Format: Elena Piskounova, Michalis Agathocleous, Ralph J. DeBerardinis, Sean J. Morrison. Oxidative stress inhibits distant metastasis by human melanoma cells. [abstract]. In: Proceedings of the AACR Special Conference: Developmental Biology and Cancer; Nov 30-Dec 3, 2015; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Res 2016;14(4_Suppl):Abstract nr IA08.

Collaboration


Dive into the Michalis Agathocleous's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sean J. Morrison

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Elena Piskounova

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ralph J. DeBerardinis

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Zeping Hu

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Muriel Perron

Université Paris-Saclay

View shared research outputs
Researchain Logo
Decentralizing Knowledge