Vassiliki Koufopanou
Imperial College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vassiliki Koufopanou.
Clinical Microbiology Reviews | 1999
John W. Taylor; David M. Geiser; Austin Burt; Vassiliki Koufopanou
SUMMARY Strain typing of medically important fungi and fungal population genetics have been stimulated by new methods of tapping DNA variation. The aim of this contribution is to show how awareness of fungal population genetics can increase the utility of strain typing to better serve the interests of medical mycology. Knowing two basic features of fungal population biology, the mode of reproduction and genetic differentiation or isolation, can give medical mycologists information about the intraspecific groups that are worth identifying and the number and type of markers that would be needed to do so. The same evolutionary information can be just as valuable for the selection of fungi for development and testing of pharmaceuticals or vaccines. The many methods of analyzing DNA variation are evaluated in light of the need for polymorphic loci that are well characterized, simple, independent, and stable. Traditional population genetic and new phylogenetic methods for analyzing mode of reproduction, genetic differentiation, and isolation are reviewed. Strain typing and population genetic reports are examined for six medically important species: Coccidioides immitis, Histoplasma capsulatum, Candida albicans, Cryptococcus neoformans, Aspergillus fumigatus, and A. flavus. Research opportunities in the areas of genomics, correlation of clinical variation with genetic variation, amount of recombination, and standardization of approach are suggested.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Isheng J. Tsai; Douda Bensasson; Austin Burt; Vassiliki Koufopanou
Most microbes have complex life cycles with multiple modes of reproduction that differ in their effects on DNA sequence variation. Population genomic analyses can therefore be used to estimate the relative frequencies of these different modes in nature. The life cycle of the wild yeast Saccharomyces paradoxus is complex, including clonal reproduction, outcrossing, and two different modes of inbreeding. To quantify these different aspects we analyzed DNA sequence variation in the third chromosome among 20 isolates from two populations. Measures of mutational and recombinational diversity were used to make two independent estimates of the population size. In an obligately sexual population these values should be approximately equal. Instead there is a discrepancy of about three orders of magnitude between our two estimates of population size, indicating that S. paradoxus goes through a sexual cycle approximately once in every 1,000 asexual generations. Chromosome III also contains the mating type locus (MAT), which is the most outbred part in the entire genome, and by comparing recombinational diversity as a function of distance from MAT we estimate the frequency of matings to be ≈94% from within the same tetrad, 5% with a clonemate after switching the mating type, and 1% outcrossed. Our study illustrates the utility of population genomic data in quantifying life cycles.
Genetics | 2004
Louise J. Johnson; Vassiliki Koufopanou; Matthew R. Goddard; Richard Hetherington; Stefanie M. Schäfer; Austin Burt
Saccharomyces paradoxus is the closest known relative of the well-known S. cerevisiae and an attractive model organism for population genetic and genomic studies. Here we characterize a set of 28 wild isolates from a 10-km2 sampling area in southern England. All 28 isolates are homothallic (capable of mating-type switching) and wild type with respect to nutrient requirements. Nine wild isolates and two lab strains of S. paradoxus were surveyed for sequence variation at six loci totaling 7 kb, and all 28 wild isolates were then genotyped at seven polymorphic loci. These data were used to calculate nucleotide diversity and number of segregating sites in S. paradoxus and to investigate geographic differentiation, population structure, and linkage disequilibrium. Synonymous site diversity is ∼0.3%. Extensive incompatibilities between gene genealogies indicate frequent recombination between unlinked loci, but there is no evidence of recombination within genes. Some localized clonal growth is apparent. The frequency of outcrossing relative to inbreeding is estimated at 1.1% on the basis of heterozygosity. Thus, all three modes of reproduction known in the lab (clonal replication, inbreeding, and outcrossing) have been important in molding genetic variation in this species.
Trends in Ecology and Evolution | 2008
Taissa Replansky; Vassiliki Koufopanou; Duncan Greig; Graham Bell
Bakers yeast, Saccharomyces cerevisiae, is not only an extensively used model system in genetics and molecular biology, it is an upcoming model for research in ecology and evolution. The available body of knowledge and molecular techniques make yeast ideal for work in areas such as evolutionary and ecological genomics, population genetics, microbial biogeography, community ecology and speciation. As long as ecological information remains scarce for this species, the vast amount of data that is being generated using S. cerevisiae as a model system will remain difficult to interpret in an evolutionary context. Here we review the current knowledge of the evolution and ecology of S. cerevisiae and closely related species in the Saccharomyces sensu stricto group, and suggest future research directions.
Philosophical Transactions of the Royal Society B | 2006
Vassiliki Koufopanou; Joseph Hughes; Graham Bell; Austin Burt
Little information is presently available on the factors promoting genetic divergence in eukaryotic microbes. We studied the spatial distribution of genetic variation in Saccharomyces paradoxus, the wild relative of Saccharomyces cerevisiae, from the scale of a few centimetres on individual oak trees to thousands of kilometres across different continents. Genealogical analysis of six loci shows that isolates from Europe form a single recombining population, and within this population genetic differentiation increases with physical distance. Between different continents, strains are more divergent and genealogically independent, indicating well-differentiated lineages that may be in the process of speciation. Such replicated populations will be useful for studies in population genomics.
The American Naturalist | 1994
Vassiliki Koufopanou
The presence of soma and the manner in which it segregates from the germ line is a fundamental aspect of development. This article examines the origin and evolution of soma in the Volvocales, the flagellated forms of green algae, by analyzing data on cell division and development of 370 species. Phylogenetic analysis suggests that the cell wall is a preadaptation for the evolution of large multicellular colonies with deterministic development. The allometry of soma and germ supports the idea that soma functions to provide functional flagella during the embryogenesis of large colonies (Volvocaceae). The need for soma arises from a constraint that prevents simultaneous flagellation and cell division of cells surrounded by rigid walls: basal bodies cannot remain attached to their flagella while migrating to the mitotic poles. The constraint is different from those that may cause the separation of flagellation and cell division in metazoan cells. Apart from a few developmental variations, which may represent adaptations to larger size, the Volvocaceae can be obtained by heterochronic changes in the timing of cell division Their small size compared to the size of nonflagellated relatives can be attributed to their locomotion by flagella, which limits the maximum amount of germ that can be carried by the soma. This limitation is manifested in a negative correlation between size and number of germ cells among the largest species of Volvocaceae (Volvox), the opposite of a positive one among the smaller species.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Isheng J. Tsai; Austin Burt; Vassiliki Koufopanou
Meiotic recombination does not occur randomly along a chromosome, but instead tends to be concentrated in small regions, known as “recombination hotspots.” Recombination hotspots are thought to be short-lived in evolutionary time due to their self-destructive nature, as gene conversion favors recombination-suppressing alleles over recombination-promoting alleles during double-strand repair. Consistent with this expectation, hotspots in humans are highly dynamic, with little correspondence in location between humans and chimpanzees. Here, we identify recombination hotspots in two lineages of the yeast Saccharomyces paradoxus, and compare their locations to those found previously in Saccharomyces cerevisiae. Surprisingly, we find considerable overlap between the two species, despite the fact that they are at least 10 times more divergent than humans and chimpanzees. We attribute this unexpected result to the low frequency of sex and outcrossing in these yeasts, acting to reduce the population genetic effect of biased gene conversion. Traces from two other signatures of recombination, namely high mutagenicity and GC-biased gene conversion, are consistent with this interpretation. Thus, recombination hotspots are not inevitably short-lived, but rather their persistence through evolutionary time will be determined by the frequency of outcrossing events in the life cycle.
Genetics | 2008
Douda Bensasson; Magdalena Zarowiecki; Austin Burt; Vassiliki Koufopanou
To find the most rapidly evolving regions in the yeast genome we compared most of chromosome III from three closely related lineages of the wild yeast Saccharomyces paradoxus. Unexpectedly, the centromere appears to be the fastest-evolving part of the chromosome, evolving even faster than DNA sequences unlikely to be under selective constraint (i.e., synonymous sites after correcting for codon usage bias and remnant transposable elements). Centromeres on other chromosomes also show an elevated rate of nucleotide substitution. Rapid centromere evolution has also been reported for some plants and animals and has been attributed to selection for inclusion in the egg or the ovule at female meiosis. But Saccharomyces yeasts have symmetrical meioses with all four products surviving, thus providing no opportunity for meiotic drive. In addition, yeast centromeres show the high levels of polymorphism expected under a neutral model of molecular evolution. We suggest that yeast centromeres suffer an elevated rate of mutation relative to other chromosomal regions and they change through a process of “centromere drift,” not drive.
Proceedings of the Royal Society of London B: Biological Sciences | 1993
Vassiliki Koufopanou; Graham Bell
The separation of soma from germ may have originated as a result of a specialization in source and sink, with somatic cells acting as sources, gathering nutrients from the external environment and germ cells as sinks, utilizing nutrients to grow and reproduce. This hypothesis can be tested in an organism, such as Volvox, where single germ cells can be cultured in isolation from the soma, thus serving both as source and sink, and their growth compared with that of germ cells with an intact soma where source and sink are separated into different cells. Results from such an experiment show that germ cells grown with an intact soma had greater rates of increase than those grown with disrupted soma or that were completely isolated, but the difference became greater as nutrient concentration increased, as predicted by the source-and-sink hypothesis. The advantage, however, was not sufficient to compensate fully for the initial investment in soma, especially at low nutrients, perhaps due to the energetic cost of swimming. In nature, species with segregated soma are found in nutrient-rich lakes and ponds. In experimental farm ponds, the biomass of such species increases with eutrophication more than the biomass of related species without division of labour, suggesting an advantage consistent with the source-and-sink.
Evolution | 1991
Vassiliki Koufopanou; Graham Bell
The nature of the variation which is created by mutation can show how the direction of evolution is constrained by internal biases arising from development and pre‐existing design. We have attempted to quantify these biases by measuring eight life history characters in developmental mutants of Volvox carteri. Most of the mutants in our sample were inferior to the wild type, but deviated by less than tenfold from the wild‐type mean. Characters differed in mutability, suggesting different levels of canalisation. Most correlations between life history characters among strains were positive, but there was a significant negative correlation between the size and the number of reproductive cells, suggesting an upper limit to the total quantity of germ produced by individuals. The most extreme phenotypes in our sample were very vigorous, showing that not all mutations of large effect are unconditionally deleterious. We investigated the effect of developmental constraints on the course of evolution by comparing the variance and covariance patterns among mutant strains with those among species in the family Volvocaceae. A close correspondence between patterns at these two levels would suggest that pre‐existing design has a strong influence on evolution, while little or no correspondence shows the action of selection. The variance generated by mutation was equal to that generated by speciation in the family Volvocaceae, the genus Volvox, or the section Merillosphaera, depending on the character considered. We found that mutation changes the volume of somatic tissue independently of the quantity of germ tissue, so that the interspecific correlation between soma and germ can be attributed to selection. The negative correlation between size and number of germ cells among mutants of V. carteri is also seen among the larger members of the family (Volvox spp.), but not among the smaller members, suggesting a powerful design constraint that may be responsible for the absence of larger forms in the entire group.