Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Casey M. Bergman is active.

Publication


Featured researches published by Casey M. Bergman.


Nature | 2012

The Drosophila melanogaster Genetic Reference Panel

Trudy F. C. Mackay; Stephen Richards; Eric A. Stone; Antonio Barbadilla; Julien F. Ayroles; Dianhui Zhu; Sònia Casillas; Yi Han; Michael M. Magwire; Julie M. Cridland; Mark F. Richardson; Robert R. H. Anholt; Maite Barrón; Crystal Bess; Kerstin P. Blankenburg; Mary Anna Carbone; David Castellano; Lesley S. Chaboub; Laura H. Duncan; Zeke Harris; Mehwish Javaid; Joy Jayaseelan; Shalini N. Jhangiani; Katherine W. Jordan; Fremiet Lara; Faye Lawrence; Sandra L. Lee; Pablo Librado; Raquel S. Linheiro; Richard F. Lyman

A major challenge of biology is understanding the relationship between molecular genetic variation and variation in quantitative traits, including fitness. This relationship determines our ability to predict phenotypes from genotypes and to understand how evolutionary forces shape variation within and between species. Previous efforts to dissect the genotype–phenotype map were based on incomplete genotypic information. Here, we describe the Drosophila melanogaster Genetic Reference Panel (DGRP), a community resource for analysis of population genomics and quantitative traits. The DGRP consists of fully sequenced inbred lines derived from a natural population. Population genomic analyses reveal reduced polymorphism in centromeric autosomal regions and the X chromosome, evidence for positive and negative selection, and rapid evolution of the X chromosome. Many variants in novel genes, most at low frequency, are associated with quantitative traits and explain a large fraction of the phenotypic variance. The DGRP facilitates genotype–phenotype mapping using the power of Drosophila genetics.


Nature | 2010

Gene expression divergence recapitulates the developmental hourglass model

Alex T. Kalinka; Karolina M. Varga; Dave T. Gerrard; Stephan Preibisch; David L. Corcoran; Julia Jarrells; Uwe Ohler; Casey M. Bergman; Pavel Tomancak

The observation that animal morphology tends to be conserved during the embryonic phylotypic period (a period of maximal similarity between the species within each animal phylum) led to the proposition that embryogenesis diverges more extensively early and late than in the middle, known as the hourglass model. This pattern of conservation is thought to reflect a major constraint on the evolution of animal body plans. Despite a wealth of morphological data confirming that there is often remarkable divergence in the early and late embryos of species from the same phylum, it is not yet known to what extent gene expression evolution, which has a central role in the elaboration of different animal forms, underpins the morphological hourglass pattern. Here we address this question using species-specific microarrays designed from six sequenced Drosophila species separated by up to 40 million years. We quantify divergence at different times during embryogenesis, and show that expression is maximally conserved during the arthropod phylotypic period. By fitting different evolutionary models to each gene, we show that at each time point more than 80% of genes fit best to models incorporating stabilizing selection, and that for genes whose evolutionarily optimal expression level is the same across all species, selective constraint is maximized during the phylotypic period. The genes that conform most to the hourglass pattern are involved in key developmental processes. These results indicate that natural selection acts to conserve patterns of gene expression during mid-embryogenesis, and provide a genome-wide insight into the molecular basis of the hourglass pattern of developmental evolution.


PLOS Computational Biology | 2005

Combined evidence annotation of transposable elements in genome sequences

Hadi Quesneville; Casey M. Bergman; Olivier Andrieu; Delphine Autard; Danielle Nouaud; Michael Ashburner; Dominique Anxolabéhère

Transposable elements (TEs) are mobile, repetitive sequences that make up significant fractions of metazoan genomes. Despite their near ubiquity and importance in genome and chromosome biology, most efforts to annotate TEs in genome sequences rely on the results of a single computational program, RepeatMasker. In contrast, recent advances in gene annotation indicate that high-quality gene models can be produced from combining multiple independent sources of computational evidence. To elevate the quality of TE annotations to a level comparable to that of gene models, we have developed a combined evidence-model TE annotation pipeline, analogous to systems used for gene annotation, by integrating results from multiple homology-based and de novo TE identification methods. As proof of principle, we have annotated “TE models” in Drosophila melanogaster Release 4 genomic sequences using the combined computational evidence derived from RepeatMasker, BLASTER, TBLASTX, all-by-all BLASTN, RECON, TE-HMM and the previous Release 3.1 annotation. Our system is designed for use with the Apollo genome annotation tool, allowing automatic results to be curated manually to produce reliable annotations. The euchromatic TE fraction of D. melanogaster is now estimated at 5.3% (cf. 3.86% in Release 3.1), and we found a substantially higher number of TEs (n = 6,013) than previously identified (n = 1,572). Most of the new TEs derive from small fragments of a few hundred nucleotides long and highly abundant families not previously annotated (e.g., INE-1). We also estimated that 518 TE copies (8.6%) are inserted into at least one other TE, forming a nest of elements. The pipeline allows rapid and thorough annotation of even the most complex TE models, including highly deleted and/or nested elements such as those often found in heterochromatic sequences. Our pipeline can be easily adapted to other genome sequences, such as those of the D. melanogaster heterochromatin or other species in the genus Drosophila.


Nucleic Acids Research | 2007

ORegAnno: an open-access community-driven resource for regulatory annotation

Obi L. Griffith; Stephen B. Montgomery; Bridget Bernier; Bryan Chu; Katayoon Kasaian; Stein Aerts; Shaun Mahony; Monica C. Sleumer; Mikhail Bilenky; Maximilian Haeussler; Malachi Griffith; Steven M. Gallo; Belinda Giardine; Bart Hooghe; Peter Van Loo; Enrique Blanco; Amy Ticoll; Stuart Lithwick; Elodie Portales-Casamar; Ian J. Donaldson; Gordon Robertson; Claes Wadelius; Pieter De Bleser; Dominique Vlieghe; Marc S. Halfon; Wyeth W. Wasserman; Ross C. Hardison; Casey M. Bergman; Steven J.M. Jones

ORegAnno is an open-source, open-access database and literature curation system for community-based annotation of experimentally identified DNA regulatory regions, transcription factor binding sites and regulatory variants. The current release comprises 30 145 records curated from 922 publications and describing regulatory sequences for over 3853 genes and 465 transcription factors from 19 species. A new feature called the ‘publication queue’ allows users to input relevant papers from scientific literature as targets for annotation. The queue contains 4438 gene regulation papers entered by experts and another 54 351 identified by text-mining methods. Users can enter or ‘check out’ papers from the queue for manual curation using a series of user-friendly annotation pages. A typical record entry consists of species, sequence type, sequence, target gene, binding factor, experimental outcome and one or more lines of experimental evidence. An evidence ontology was developed to describe and categorize these experiments. Records are cross-referenced to Ensembl or Entrez gene identifiers, PubMed and dbSNP and can be visualized in the Ensembl or UCSC genome browsers. All data are freely available through search pages, XML data dumps or web services at: http://www.oreganno.org.


PLOS Biology | 2005

Functional Evolution of a cis-Regulatory Module

Michael Ludwig; Arnar Palsson; Elena Alekseeva; Casey M. Bergman; Janaki Nathan; Martin Kreitman

Lack of knowledge about how regulatory regions evolve in relation to their structure–function may limit the utility of comparative sequence analysis in deciphering cis-regulatory sequences. To address this we applied reverse genetics to carry out a functional genetic complementation analysis of a eukaryotic cis-regulatory module—the even-skipped stripe 2 enhancer—from four Drosophila species. The evolution of this enhancer is non-clock-like, with important functional differences between closely related species and functional convergence between distantly related species. Functional divergence is attributable to differences in activation levels rather than spatiotemporal control of gene expression. Our findings have implications for understanding enhancer structure–function, mechanisms of speciation and computational identification of regulatory modules.


Bioinformatics | 2005

Drosophila DNase I footprint database: a systematic genome annotation of transcription factor binding sites in the fruitfly, Drosophila melanogaster

Casey M. Bergman; Joseph W. Carlson; Susan E. Celniker

UNLABELLED Despite increasing numbers of computational tools developed to predict cis-regulatory sequences, the availability of high-quality datasets of transcription factor binding sites limits advances in the bioinformatics of gene regulation. Here we present such a dataset based on a systematic literature curation and genome annotation of DNase I footprints for the fruitfly, Drosophila melanogaster. Using the experimental results of 201 primary references, we annotated 1367 binding sites from 87 transcription factors and 101 target genes in the D.melanogaster genome sequence. These data will provide a rich resource for future bioinformatics analyses of transcriptional regulation in Drosophila such as constructing motif models, training cis-regulatory module detectors, benchmarking alignment tools and continued text mining of the extensive literature on transcriptional regulation in this important model organism. AVAILABILITY http://www.flyreg.org/ CONTACT [email protected].


BMC Bioinformatics | 2010

LINNAEUS: A species name identification system for biomedical literature

Martin Gerner; Goran Nenadic; Casey M. Bergman

BackgroundThe task of recognizing and identifying species names in biomedical literature has recently been regarded as critical for a number of applications in text and data mining, including gene name recognition, species-specific document retrieval, and semantic enrichment of biomedical articles.ResultsIn this paper we describe an open-source species name recognition and normalization software system, LINNAEUS, and evaluate its performance relative to several automatically generated biomedical corpora, as well as a novel corpus of full-text documents manually annotated for species mentions. LINNAEUS uses a dictionary-based approach (implemented as an efficient deterministic finite-state automaton) to identify species names and a set of heuristics to resolve ambiguous mentions. When compared against our manually annotated corpus, LINNAEUS performs with 94% recall and 97% precision at the mention level, and 98% recall and 90% precision at the document level. Our system successfully solves the problem of disambiguating uncertain species mentions, with 97% of all mentions in PubMed Central full-text documents resolved to unambiguous NCBI taxonomy identifiers.ConclusionsLINNAEUS is an open source, stand-alone software system capable of recognizing and normalizing species name mentions with speed and accuracy, and can therefore be integrated into a range of bioinformatics and text-mining applications. The software and manually annotated corpus can be downloaded freely at http://linnaeus.sourceforge.net/.


Genome Biology | 2008

Text mining for biology - the way forward: opinions from leading scientists

Russ B. Altman; Casey M. Bergman; Judith A. Blake; Christian Blaschke; Aaron M. Cohen; Frank Gannon; Les Grivell; Udo Hahn; William R. Hersh; Lynette Hirschman; Lars Juhl Jensen; Martin Krallinger; Barend Mons; Seán I. O'Donoghue; Manuel C. Peitsch; Dietrich Rebholz-Schuhmann; Hagit Shatkay; Alfonso Valencia

This article collects opinions from leading scientists about how text mining can provide better access to the biological literature, how the scientific community can help with this process, what the next steps are, and what role future BioCreative evaluations can play. The responses identify several broad themes, including the possibility of fusing literature and biological databases through text mining; the need for user interfaces tailored to different classes of users and supporting community-based annotation; the importance of scaling text mining technology and inserting it into larger workflows; and suggestions for additional challenge evaluations, new applications, and additional resources needed to make progress.


PLOS Genetics | 2012

Population Genomics of the Wolbachia Endosymbiont in Drosophila melanogaster

Mark F. Richardson; Lucy A. Weinert; John J. Welch; Raquel S. Linheiro; Michael M. Magwire; Francis M. Jiggins; Casey M. Bergman

Wolbachia are maternally inherited symbiotic bacteria, commonly found in arthropods, which are able to manipulate the reproduction of their host in order to maximise their transmission. The evolutionary history of endosymbionts like Wolbachia can be revealed by integrating information on infection status in natural populations with patterns of sequence variation in Wolbachia and host mitochondrial genomes. Here we use whole-genome resequencing data from 290 lines of Drosophila melanogaster from North America, Europe, and Africa to predict Wolbachia infection status, estimate relative cytoplasmic genome copy number, and reconstruct Wolbachia and mitochondrial genome sequences. Overall, 63% of Drosophila strains were predicted to be infected with Wolbachia by our in silico analysis pipeline, which shows 99% concordance with infection status determined by diagnostic PCR. Complete Wolbachia and mitochondrial genomes show congruent phylogenies, consistent with strict vertical transmission through the maternal cytoplasm and imperfect transmission of Wolbachia. Bayesian phylogenetic analysis reveals that the most recent common ancestor of all Wolbachia and mitochondrial genomes in D. melanogaster dates to around 8,000 years ago. We find evidence for a recent global replacement of ancestral Wolbachia and mtDNA lineages, but our data suggest that the derived wMel lineage arose several thousand years ago, not in the 20th century as previously proposed. Our data also provide evidence that this global replacement event is incomplete and is likely to be one of several similar incomplete replacement events that have occurred since the out-of-Africa migration that allowed D. melanogaster to colonize worldwide habitats. This study provides a complete genomic analysis of the evolutionary mode and temporal dynamics of the D. melanogaster–Wolbachia symbiosis, as well as important resources for further analyses of the impact of Wolbachia on host biology.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Recent LTR retrotransposon insertion contrasts with waves of non-LTR insertion since speciation in Drosophila melanogaster

Casey M. Bergman; Douda Bensasson

LTR and non-LTR retrotransposons exhibit distinct patterns of abundance within the Drosophila melanogaster genome, yet the causes of these differences remain unknown. Here we investigate whether genomic differences between LTR and non-LTR retrotransposons reflect systematic differences in their insertion history. We find that for 17 LTR and 10 non-LTR retrotransposon families that evolve under a pseudogene-like mode of evolution, most elements from LTR families have integrated in the very recent past since colonization of non-African habitats (≈16,000 years ago), whereas elements from non-LTR families have been accumulating in overlapping waves since the divergence of D. melanogaster from its sister species, Drosophila simulans (≈5.4 Mya). LTR elements are significantly younger than non-LTR elements, individually and by family, in regions of high and low recombination, and in genic and intergenic regions. We show that analysis of transposable element (TE) nesting provides a method to calculate transposition rates from genome sequences, which we estimate to be one to two orders of magnitude lower than those that are based on mutation accumulation studies. Recent LTR integration provides a nonequilibrium alternative for the low population frequency of LTR elements in this species, a pattern that is classically interpreted as evidence for selection against the transpositional increase of TEs. Our results call for a new class of population genetic models that incorporate TE copy number, allele frequency, and the age of insertions to provide more powerful and robust inferences about the forces that control the evolution of TEs in natural populations.

Collaboration


Dive into the Casey M. Bergman's collaboration.

Top Co-Authors

Avatar

Goran Nenadic

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Martin Gerner

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Obi L. Griffith

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven J.M. Jones

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Michael D. Barton

Northern Kentucky University

View shared research outputs
Top Co-Authors

Avatar

Susan E. Celniker

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge