Vatee Pattaropong
ImClone Systems
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vatee Pattaropong.
ACS Medicinal Chemistry Letters | 2013
Yingcai Wang; Jiwen Liu; Paul John Dransfield; Liusheng Zhu; Zhongyu Wang; Xiaohui Du; Xianyun Jiao; Yongli Su; An-Rong Li; Sean P. Brown; Annie Kasparian; Marc Vimolratana; Ming Yu; Vatee Pattaropong; Jonathan B. Houze; Gayathri Swaminath; Thanhvien Tran; Khanh Nguyen; Qi Guo; Jane Zhang; Run Zhuang; Frank Li; Lynn Miao; Michael D. Bartberger; Tiffany L. Correll; David Chow; Simon Wong; Jian Luo; Daniel C.-H. Lin; Julio C. Medina
GPR40 (FFAR1 or FFA1) is a target of high interest being pursued to treat type II diabetes due to its unique mechanism leading to little risk of hypoglycemia. We recently reported the discovery of AM-1638 (2), a potent full agonist of GPR40. In this report, we present the discovery of GPR40 full agonists containing conformationally constrained tricyclic spirocycles and their structure-activity relationships leading to more potent agonists such as AM-5262 (26) with improved rat PK profile and general selectivity profile. AM-5262 enhanced glucose stimulated insulin secretion (mouse and human islets) and improved glucose homeostasis in vivo (OGTT in HF/STZ mice) when compared to AM-1638.
ACS Medicinal Chemistry Letters | 2012
Sean P. Brown; Paul John Dransfield; Marc Vimolratana; Xianyun Jiao; Liusheng Zhu; Vatee Pattaropong; Jinqian Liu; Jian Luo; Jane Zhang; Simon Wong; Run Zhuang; Qi Guo; Frank Li; Julio C. Medina; Gayathri Swaminath; Daniel C.-H. Lin; Jonathan B. Houze
GPR40 (FFA1) is a G-protein-coupled receptor, primarily expressed in pancreatic islets, the activation of which elicits increased insulin secretion only in the presence of elevated glucose levels. A potent, orally bioavailable small molecule GPR40 agonist is hypothesized to be an effective antidiabetic posing little or no risk of hypoglycemia. We recently reported the discovery of AMG 837 (1), a potent partial agonist of GPR40. Herein, we present the optimization from the GPR40 partial agonist 1 to the structurally and pharmacologically distinct GPR40 full agonist AM-1638 (21). Moreover, we demonstrate the improved in vivo efficacy that GPR40 full agonist 21 exhibits in BDF/DIO mice as compared to partial agonist 1.
Journal of Medicinal Chemistry | 2015
Timothy D. Cushing; Xiaolin Hao; Youngsook Shin; Kristin L. Andrews; Matthew Frank Brown; Mario G. Cardozo; Yi Chen; Jason Duquette; Ben Fisher; Felix Gonzalez-Lopez de Turiso; Xiao He; Kirk R. Henne; Yi-Ling Hu; Randall W. Hungate; Michael G. Johnson; Ron C. Kelly; Brian Lucas; John D. McCarter; Lawrence R. McGee; Julio C. Medina; Tisha San Miguel; Deanna Mohn; Vatee Pattaropong; Liping H. Pettus; Andreas Reichelt; Robert M. Rzasa; Jennifer Seganish; Andrew Tasker; Robert C. Wahl; Sharon Wannberg
The development and optimization of a series of quinolinylpurines as potent and selective PI3Kδ kinase inhibitors with excellent physicochemical properties are described. This medicinal chemistry effort led to the identification of 1 (AMG319), a compound with an IC50 of 16 nM in a human whole blood assay (HWB), excellent selectivity over a large panel of protein kinases, and a high level of in vivo efficacy as measured by two rodent disease models of inflammation.
Journal of Medicinal Chemistry | 2012
Felix Gonzalez-Lopez de Turiso; Youngsook Shin; Matthew Frank Brown; Mario G. Cardozo; Yi Chen; David Fong; Xiaolin Hao; Xiao He; Kirk R. Henne; Yi-Ling Hu; Michael G. Johnson; Todd J. Kohn; Julia Winslow Lohman; Helen J. McBride; Lawrence R. McGee; Julio C. Medina; Daniela Metz; Kent Miner; Deanna Mohn; Vatee Pattaropong; Jennifer Seganish; Jillian L. Simard; Sharon Wannberg; Douglas A. Whittington; Gang Yu; Timothy D. Cushing
Structure-based rational design led to the synthesis of a novel series of potent PI3K inhibitors. The optimized pyrrolopyridine analogue 63 was a potent and selective PI3Kβ/δ dual inhibitor that displayed suitable physicochemical properties and pharmacokinetic profile for animal studies. Analogue 63 was found to be efficacious in animal models of inflammation including a keyhole limpet hemocyanin (KLH) study and a collagen-induced arthritis (CIA) disease model of rheumatoid arthritis. These studies highlight the potential therapeutic value of inhibiting both the PI3Kβ and δ isoforms in the treatment of a number of inflammatory diseases.
ACS Medicinal Chemistry Letters | 2010
Eugene L. Piatnitski Chekler; Alexander S. Kiselyov; Xiaohu Ouyang; Xiaoling Chen; Vatee Pattaropong; Ying Wang; M. Carolina Tuma; Jacqueline F. Doody
In an effort to develop potent, orally bioavailable compounds for the treatment of neoplastic diseases, we developed a class of dual VEGFR-2 kinase and tubulin inhibitors. Targeting the VEGFR receptor kinase and tubulin structure allows for inhibition of both tumor cells and tumor vasculature. Previously, a combination of two compounds, a VEGF receptor tyrosine kinase inhibitor and tubulin agent, was demonstrated to produce an enhanced antitumor response in animal studies. We have reaffirmed their results, with the added benefit that both activities are found in one compound.
ACS Medicinal Chemistry Letters | 2016
Paul John Dransfield; Vatee Pattaropong; SuJen Lai; Zice Fu; Todd J. Kohn; Xiaohui Du; Alan C. Cheng; Yumei Xiong; Renee Komorowski; Lixia Jin; Marion Conn; Eric Tien; Walter E. DeWolf; Ronald Jay Hinklin; Thomas Daniel Aicher; Christopher F. Kraser; Steven Armen Boyd; Walter C. Voegtli; Kevin Ronald Condroski; Murielle Veniant-Ellison; Julio C. Medina; Jonathan B. Houze; Peter Coward
Glucokinase (GK) catalyzes the phosphorylation of glucose to glucose-6-phosphate. We present the structure-activity relationships leading to the discovery of AM-2394, a structurally distinct GKA. AM-2394 activates GK with an EC50 of 60 nM, increases the affinity of GK for glucose by approximately 10-fold, exhibits moderate clearance and good oral bioavailability in multiple animal models, and lowers glucose excursion following an oral glucose tolerance test in an ob/ob mouse model of diabetes.
ACS Medicinal Chemistry Letters | 2016
Todd J. Kohn; Xiaohui Du; SuJen Lai; Yumei Xiong; Renee Komorowski; Murielle M. Véniant; Zice Fu; Xianyun Jiao; Vatee Pattaropong; David Chow; Mario G. Cardozo; Lixia Jin; Marion Conn; Walter E. DeWolf; Christopher F. Kraser; Ronald Jay Hinklin; Mark Laurence Boys; Julio C. Medina; Jonathan B. Houze; Paul John Dransfield; Peter Coward
Two 1-(4-aryl-5-alkyl-pyridin-2-yl)-3-methylurea glucokinase activators were identified with robust in vivo efficacy. These two compounds possessed higher solubilities than the previously identified triaryl compounds (i.e., AM-2394). Structure–activity relationship studies are presented along with relevant pharmacokinetic and in vivo data.
Bioorganic & Medicinal Chemistry Letters | 2006
Xiaohu Ouyang; Evgueni Piatnitski; Vatee Pattaropong; Xiaoling Chen; Hai-Ying He; Alexander S. Kiselyov; Avdhoot Velankar; Joel Kawakami; Marc Labelle; Leon M. Smith; Julia Winslow Lohman; Sui Ping Lee; Asra Malikzay; James Fleming; Jason Gerlak; Ying Wang; Robin L. Rosler; Kai Zhou; Stan Mitelman; Margarita Camara; David Surguladze; Jacqueline F. Doody; M. Carolina Tuma
Bioorganic & Medicinal Chemistry Letters | 2005
Xiaohu Ouyang; Xiaoling Chen; Evgueni Piatnitski; Alexander S. Kiselyov; Hai-Ying He; Yunyu Mao; Vatee Pattaropong; Yang Yu; Ki Kim; John Kincaid; Leon M. Smith; Wai C. Wong; Sui Ping Lee; Daniel L. Milligan; Asra Malikzay; James Fleming; Jason Gerlak; Dhanvanthri S. Deevi; Jacqueline F. Doody; Hui-Hsien Chiang; Sheetal Patel; Ying Wang; Robin L. Rolser; Paul Kussie; Marc Labelle; M. Carolina Tuma
Archive | 2009
Guoqing Chen; Timothy D. Cushing; Paul Faulder; Benjamin Fisher; Xiao He; Kexue Li; Zhihong Li; Wen Liu; Lawrence R. McGee; Vatee Pattaropong; Jennifer Seganish; Youngshook Shin; Zhulun Wang