Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Venkataramanujan Srinivasan is active.

Publication


Featured researches published by Venkataramanujan Srinivasan.


Progress in Neurobiology | 2008

Physiological effects of melatonin: Role of melatonin receptors and signal transduction pathways

Seithikurippu R. Pandi-Perumal; Ilya Trakht; Venkataramanujan Srinivasan; D. Warren Spence; Georges J.M. Maestroni; Nava Zisapel; Daniel P. Cardinali

Melatonin, an endogenous signal of darkness, is an important component of the bodys internal time-keeping system. As such it regulates major physiological processes including the sleep wake cycle, pubertal development and seasonal adaptation. In addition to its relevant antioxidant activity, melatonin exerts many of its physiological actions by interacting with membrane MT1 and MT2 receptors and intracellular proteins such as quinone reductase 2, calmodulin, calreticulin and tubulin. Here we review the current knowledge about the properties and signaling of melatonin receptors as well as their potential role in health and some diseases. Melatonin MT1 and MT2 receptors are G protein coupled receptors which are expressed in various parts of the CNS (suprachiasmatic nuclei, hippocampus, cerebellar cortex, prefrontal cortex, basal ganglia, substantia nigra, ventral tegmental area, nucleus accumbens and retinal horizontal, amacrine and ganglion cells) and in peripheral organs (blood vessels, mammary gland, gastrointestinal tract, liver, kidney and bladder, ovary, testis, prostate, skin and the immune system). Melatonin receptors mediate a plethora of intracellular effects depending on the cellular milieu. These effects comprise changes in intracellular cyclic nucleotides (cAMP, cGMP) and calcium levels, activation of certain protein kinase C subtypes, intracellular localization of steroid hormone receptors and regulation of G protein signaling proteins. There are circadian variations in melatonin receptors and responses. Alterations in melatonin receptor expression as well as changes in endogenous melatonin production have been shown in circadian rhythm sleep disorders, Alzheimers and Parkinsons diseases, glaucoma, depressive disorder, breast and prostate cancer, hepatoma and melanoma. This paper reviews the evidence concerning melatonin receptors and signal transduction pathways in various organs. It further considers their relevance to circadian physiology and pathogenesis of certain human diseases, with a focus on the brain, the cardiovascular and immune systems, and cancer.


World Journal of Biological Psychiatry | 2006

Melatonin in mood disorders

Venkataramanujan Srinivasan; Marcel Smits; Warren Spence; Alan D. Lowe; Leonid Kayumov; Seithikurippu R. Pandi-Perumal; Barbara L. Parry; Daniel P. Cardinali

The cyclic nature of depressive illness, the diurnal variations in its symptomatology and the existence of disturbed sleep–wake and core body temperature rhythms, all suggest that dysfunction of the circadian time keeping system may underlie the pathophysiology of depression. As a rhythm-regulating factor, the study of melatonin in various depressive illnesses has gained attention. Melatonin can be both a ‘state marker’ and a ‘trait marker’ of mood disorders. Measurement of melatonin either in saliva or plasma, or of its main metabolite 6-sulfatoxymelatonin in urine, have documented significant alterations in melatonin secretion in depressive patients during the acute phase of illness. Not only the levels but also the timing of melatonin secretion is altered in bipolar affective disorder and in patients with seasonal affective disorder (SAD). A phase delay of melatonin secretion takes place in SAD, as well as changes in the onset, duration and offset of melatonin secretion. Bright light treatment, that suppresses melatonin production, is effective in treating bipolar affective disorder and SAD, winter type. This review discusses the role of melatonin in the pathophysiology of bipolar disorder and SAD.


Journal of Pineal Research | 2012

Melatonin and its analogs in insomnia and depression.

Daniel P. Cardinali; Venkataramanujan Srinivasan; Amnon Brzezinski; Gregory M. Brown

Abstract:  Benzodiazepine sedative‐hypnotic drugs are widely used for the treatment of insomnia. Nevertheless, their adverse effects, such as next‐day hangover, dependence and impairment of memory, make them unsuitable for long‐term treatment. Melatonin has been used for improving sleep in patients with insomnia mainly because it does not cause hangover or show any addictive potential. However, there is a lack of consistency on its therapeutic value (partly because of its short half‐life and the small quantities of melatonin employed). Thus, attention has been focused either on the development of more potent melatonin analogs with prolonged effects or on the design of slow release melatonin preparations. The MT1 and MT2 melatonergic receptor ramelteon was effective in increasing total sleep time and sleep efficiency, as well as in reducing sleep latency, in insomnia patients. The melatonergic antidepressant agomelatine, displaying potent MT1 and MT2 melatonergic agonism and relatively weak serotonin 5HT2C receptor antagonism, was found effective in the treatment of depressed patients. However, long‐term safety studies are lacking for both melatonin agonists, particularly considering the pharmacological activity of their metabolites. In view of the higher binding affinities, longest half‐life and relative higher potencies of the different melatonin agonists, studies using 2 or 3 mg/day of melatonin are probably unsuitable to give appropriate comparison of the effects of the natural compound. Hence, clinical trials employing melatonin doses in the range of 50–100 mg/day are warranted before the relative merits of the melatonin analogs versus melatonin can be settled.


Psychiatry Research-neuroimaging | 2009

Pathophysiology of depression: role of sleep and the melatonergic system.

Venkataramanujan Srinivasan; Seithikurippu R. Pandi-Perumal; Ilya Trakht; D. Warren Spence; R. Hardeland; Burkhard Poeggeler; Daniel P. Cardinali

Profound disturbances in sleep architecture occur in major depressive disorders (MDD) and in bipolar affective disorders. Reduction in slow wave sleep, decreased latency of rapid eye movement (REM) sleep and abnormalities in the timing of REM/non-REM sleep cycles have all been documented in patients with MDD. It is thus evident that an understanding of the basic mechanisms of sleep regulation is essential for an analysis of the pathophysiology of depressive disorders. The suprachiasmatic nucleus (SCN), which functions as the bodys master circadian clock, plays a major role in the regulation of the sleep/wakefulness rhythm and interacts actively with the homeostatic processes that regulate sleep. The control of melatonin secretion by the SCN, the occurrence of high concentrations of melatonin receptors in the SCN, and the suppression of electrical activity in the SCN by melatonin all underscore the major influence which this neurohormone has in regulating the sleep/wake cycle. The transition from wakefulness to high sleep propensity is associated with the nocturnal rise of endogenous melatonin secretion. Various lines of evidence show that depressed patients exhibit disturbances in both the amplitude and shape of the melatonin secretion rhythm and that melatonin can improve the quality of sleep in these patients. The choice of a suitable antidepressant that improves sleep quality is thus important while treating a depressive disorder. The novel antidepressant agomelatine, which combines the properties of a 5-HT(2C) antagonist and a melatonergic MT(1)/MT(2) receptor agonist, has been found very effective for resetting the disturbed sleep/wake cycle and in improving the clinical status of MDD. Agomelatine has also been found useful in treating sleep problems and improving the clinical status of patients suffering from seasonal affective disorder.


Integrative Cancer Therapies | 2008

Therapeutic actions of melatonin in cancer: possible mechanisms.

Venkataramanujan Srinivasan; D. Warren Spence; Seithikurippu R. Pandi-Perumal; Ilya Trakht; Daniel P. Cardinali

Melatonin is a phylogenetically well-preserved molecule with diverse physiological functions. In addition to its well-known regulatory control of the sleep/wake cycle, as well as circadian rhythms generally, melatonin is involved in immunomodulation, hematopoiesis, and antioxidative processes. Recent human and animal studies have now shown that melatonin also has important oncostatic properties. Both at physiological and pharmacological doses melatonin exerts growth inhibitory effects on breast cancer cell lines. In hepatomas, through its activation of MT 1 and MT2 receptors, melatonin inhibits linoleic acid uptake, thereby preventing the formation of the mitogenic metabolite 1,3-hydroxyoctadecadienoic acid. In animal model studies, melatonin has been shown to have preventative action against nitrosodiethylamine (NDEA)-induced liver cancer. Melatonin also inhibits the growth of prostate tumors via activation of MT1 receptors thereby inducing translocation of the androgen receptor to the cytoplasm and inhibition of the effect of endogenous androgens. There is abundant evidence indicating that melatonin is involved in preventing tumor initiation, promotion, and progression. The anticarcinogenic effect of melatonin on neoplastic cells relies on its antioxidant, immunostimulating, and apoptotic properties. Melatonins oncostatic actions include the direct augmentation of natural killer (NK) cell activity, which increases immunosurveillance, as well as the stimulation of cytokine production, for example, of interleukin (IL)-2, IL-6, IL-12, and interferon (IFN)-γ. In addition to its direct oncostatic action, melatonin protects hematopoietic precursors from the toxic effect of anticancer chemotherapeutic drugs. Melatonin secretion is impaired in patients suffering from breast cancer, endometrial cancer, or colorectal cancer. The increased incidence of breast cancer and colorectal cancer seen in nurses and other night shift workers suggests a possible link between diminished secretion of melatonin and increased exposure to light during nighttime. The physiological surge of melatonin at night is thus considered a “natural restraint” on tumor initiation, promotion, and progression.


International Journal of Neuroscience | 2009

Melatonin and Melatonergic Drugs on Sleep: Possible Mechanisms of Action

Venkataramanujan Srinivasan; Seithikurippu R. Pandi-Perumal; Ilya Trahkt; D. Warren Spence; Burkhard Poeggeler; R. Hardeland; Daniel P. Cardinali

Pineal melatonin is synthesized and secreted in close association with the light/dark cycle. The temporal relationship between the nocturnal rise in melatonin secretion and the “opening of the sleep gate” (i.e., the increase in sleep propensity at the beginning of the night), coupled with the sleep-promoting effects of exogenous melatonin, suggest that melatonin is involved in the regulation of sleep. The sleep-promoting and sleep/wake rhythm regulating effects of melatonin are attributed to its action on MT1 and MT2 melatonin receptors present in the suprachiasmatic nucleus (SCN) of the hypothalamus. Animal experiments carried out in rats, cats, and monkeys have revealed that melatonin has the ability to reduce sleep onset time and increase sleep duration. However, clinical studies reveal inconsistent findings, with some of them reporting beneficial effects of melatonin on sleep, whereas in others only marginal effects are documented. Recently a prolonged-release 2-mg melatonin preparation (CircadinTM) was approved by the European Medicines Agency as a monotherapy for the short-term treatment of primary insomnia in patients who are aged 55 or above. Several melatonin derivatives have been shown to increase nonrapid eye movement (NREM) in rats and are of potential pharmacological importance. So far only one of these melatonin derivatives, ramelteon, has received approval from the U.S. Food and Drug Administration to be used as a sleep promoter. Ramelteon is a novel MT1 and MT2 melatonergic agonist that has specific effects on melatonin receptors in the SCN and is effective in promoting sleep in experimental animals such as cats and monkeys. In clinical trials, ramelteon reduced sleep onset latency and promoted sleep in patients with chronic insomnia, including an older adult population. Both melatonin and ramelteon promote sleep by regulating the sleep/wake rhythm through their actions on melatonin receptors in the SCN, a unique mechanism of action not shared by any other hypnotics. Moreover, unlike benzodiazepines, ramelteon causes neither withdrawal effects nor dependence. Agomelatine, another novel melatonergic antidepressant in its final phase of approval for clinical use, has been shown to improve sleep in depressed patients and to have an antidepressant efficacy that is partially attributed to its effects on sleep-regulating mechanisms.


Neuroimmunomodulation | 2008

Melatonin and the Immune System in Aging

Daniel P. Cardinali; Ana I. Esquifino; Venkataramanujan Srinivasan; Seithikurippu R. Pandi-Perumal

Aging is associated with a decline in immune function (immunosenescence), a condition known to correlate with increased incidence of cancer as well as infectious and degenerative diseases. Innate, cellular and humoral immunity all exhibit increased deterioration with age. Circulating melatonin decreases with age, and in recent years much interest has been focused on its immunomodulatory effect. Melatonin stimulates the production of progenitor cells for granulocytes and macrophages. It also stimulates the production of natural killer cells and CD4+ cells and inhibits CD8+ cells. The production and release of various cytokines from natural killer cells and T helper lymphocytes are enhanced by melatonin. Melatonin has the potential therapeutic value to enhance immune function in aged individuals.


Nature Reviews Neurology | 2008

The roles of melatonin and light in the pathophysiology and treatment of circadian rhythm sleep disorders

Seithikurippu R. Pandi-Perumal; Ilya Trakht; D. Warren Spence; Venkataramanujan Srinivasan; Yaron Dagan; Daniel P. Cardinali

Normal circadian rhythms are synchronized to a regular 24 h environmental light–dark cycle, and the suprachiasmatic nucleus and the hormone melatonin have important roles in this process. Desynchronization of circadian rhythms, as occurs in chronobiological disorders, can produce severe disturbances in sleep patterns. According to the International Classification of Sleep Disorders, circadian rhythm sleep disorders (CRSDs) include delayed sleep phase syndrome, advanced sleep phase syndrome, non-24 h sleep–wake disorder, jet lag and shift-work sleep disorder. Disturbances in the circadian phase position of plasma melatonin levels have been documented in all of these disorders. There is compelling evidence to implicate endogenous melatonin as an important mediator in CRSD pathophysiology, although further research involving large numbers of patients will be required to clarify whether the disruption of melatonin secretion is a causal factor in CRSDs. In this Review, we focus on the use of exogenous melatonin and light therapy to treat the disturbed sleep–wake rhythms seen in CRSDs.


Nature Reviews Neurology | 2007

Drug Insight: the use of melatonergic agonists for the treatment of insomnia-focus on ramelteon.

Seithikurippu R. Pandi-Perumal; Venkataramanujan Srinivasan; Burkhard Poeggeler; Rüdiger Hardeland; Daniel P. Cardinali

Melatonin, a chronobiotic that participates in the control of the circadian system, is known for its sleep-promoting effects, which include shortening of sleep latency and lengthening of sleep duration. As a result of its short half-life, melatonin does not exhibit undesirable side effects, and its broad applicability for a variety of sleep problems has been the focus of numerous scientific studies. Melatonin has not, however, received regulatory approval from the US FDA as a drug, because it can be sold freely as a food supplement. Consequently, there has been an active search for patentable melatonin receptor ligands in recent years. Ramelteon, an agonist that acts solely on melatonin MT1 and MT2 receptors, is of particular interest, and preliminary research indicates that it holds considerable promise for clinical applications. Ramelteon has been shown to induce sleep initiation and maintenance in various animal models and in clinical trials. In chronic insomnia, ramelteon decreases sleep latency and increases total sleep time and sleep efficiency, without causing hangover, addiction or withdrawal effects. Ramelteon is thought to promote sleep by influencing homeostatic sleep signaling mediated by the suprachiasmatic nucleus. Although ramelteons metabolism and pharmacokinetics differ from those of melatonin, its safety seems to be sufficient for short-term application. Its long-term effects remain to be determined.


Journal of Critical Care | 2010

Melatonin in septic shock: Some recent concepts

Venkataramanujan Srinivasan; Seithikurippu R. Pandi-Perumal; D. Warren Spence; Hisanori Kato; Daniel P. Cardinali

Melatonin is a versatile molecule, synthesized not only in the pineal gland, but also in many other organs. Melatonin plays an important physiologic role in sleep and circadian rhythm regulation, immunoregulation, antioxidant and mitochondrial-protective functions, reproductive control, and regulation of mood. Melatonin has also been reported as effective in combating various bacterial and viral infections. Melatonin is an effective anti-inflammatory agent in various animal models of inflammation and sepsis, and its anti-inflammatory action has been attributed to inhibition of nitric oxide synthase with consequent reduction of peroxynitrite formation, to the stimulation of various antioxidant enzymes thus contributing to enhance the antioxidant defense, and to protective effects on mitochondrial function and in preventing apoptosis. In a number of animal models of septic shock, as well as in patients with septic disease, melatonin reportedly exerts beneficial effects to arrest cellular damage and multiorgan failure. The significance of these actions in septic shock and its potential usefulness in the treatment of multiorgan failure are discussed.

Collaboration


Dive into the Venkataramanujan Srinivasan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory M. Brown

Centre for Addiction and Mental Health

View shared research outputs
Top Co-Authors

Avatar

R. Hardeland

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Warren Spence

Centre for Addiction and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonid Kayumov

University Health Network

View shared research outputs
Top Co-Authors

Avatar

Cheri Lubahn

Arizona State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge