Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Venkatesh Mani is active.

Publication


Featured researches published by Venkatesh Mani.


PLOS ONE | 2013

Heat stress reduces intestinal barrier integrity and favors intestinal glucose transport in growing pigs.

Sarah Pearce; Venkatesh Mani; Rebecca L. Boddicker; Jay S. Johnson; Thomas E. Weber; Jason W. Ross; Robert P. Rhoads; L. H. Baumgard; Nicholas K. Gabler

Excessive heat exposure reduces intestinal integrity and post-absorptive energetics that can inhibit wellbeing and be fatal. Therefore, our objectives were to examine how acute heat stress (HS) alters intestinal integrity and metabolism in growing pigs. Animals were exposed to either thermal neutral (TN, 21°C; 35–50% humidity; n = 8) or HS conditions (35°C; 24–43% humidity; n = 8) for 24 h. Compared to TN, rectal temperatures in HS pigs increased by 1.6°C and respiration rates by 2-fold (P<0.05). As expected, HS decreased feed intake by 53% (P<0.05) and body weight (P<0.05) compared to TN pigs. Ileum heat shock protein 70 expression increased (P<0.05), while intestinal integrity was compromised in the HS pigs (ileum and colon TER decreased; P<0.05). Furthermore, HS increased serum endotoxin concentrations (P = 0.05). Intestinal permeability was accompanied by an increase in protein expression of myosin light chain kinase (P<0.05) and casein kinase II-α (P = 0.06). Protein expression of tight junction (TJ) proteins in the ileum revealed claudin 3 and occludin expression to be increased overall due to HS (P<0.05), while there were no differences in claudin 1 expression. Intestinal glucose transport and blood glucose were elevated due to HS (P<0.05). This was supported by increased ileum Na+/K+ ATPase activity in HS pigs. SGLT-1 protein expression was unaltered; however, HS increased ileal GLUT-2 protein expression (P = 0.06). Altogether, these data indicate that HS reduce intestinal integrity and increase intestinal stress and glucose transport.


Journal of Animal Science | 2012

Growth and Development Symposium: Endotoxin, inflammation, and intestinal function in livestock.

Venkatesh Mani; T. E. Weber; L. H. Baumgard; Nicholas K. Gabler

Endotoxin, also referred to as lipopolysaccharide (LPS), can stimulate localized or systemic inflammation via the activation of pattern recognition receptors. Additionally, endotoxin and inflammation can regulate intestinal epithelial function by altering integrity, nutrient transport, and utilization. The gastrointestinal tract is a large reservoir of both gram-positive and gram-negative bacteria, of which the gram-negative bacteria serve as a source of endotoxin. Luminal endotoxin can enter circulation via two routes: 1) nonspecific paracellular transport through epithelial cell tight junctions, and 2) transcellular transport through lipid raft membrane domains involving receptor-mediated endocytosis. Paracellular transport of endotoxin occurs through dissociation of tight junction protein complexes resulting in reduced intestinal barrier integrity, which can be a result of enteric disease, inflammation, or environmental and metabolic stress. Transcellular transport, via specialized membrane regions rich in glycolipids, sphingolipids, cholesterol, and saturated fatty acids, is a result of raft recruitment of endotoxin-related signaling proteins leading to endotoxin signaling and endocytosis. Both transport routes and sensitivity to endotoxin may be altered by diet and environmental and metabolic stresses. Intestinal-derived endotoxin and inflammation result in suppressed appetite, activation of the immune system, and partitioning of energy and nutrients away from growth toward supporting the immune system requirements. In livestock, this leads to the suppression of growth, particularly suppression of lean tissue accretion. In this paper, we summarize the evidence that intestinal transport of endotoxin and the subsequent inflammation leads to decrease in the production performance of agricultural animals and we present an overview of endotoxin detoxification mechanisms in livestock.


Journal of Animal Science | 2013

Heat stress and reduced plane of nutrition decreases intestinal integrity and function in pigs.

Sarah Pearce; Venkatesh Mani; Thomas E. Weber; Robert P. Rhoads; J. F. Patience; L. H. Baumgard; Nicholas K. Gabler

Heat stress can compromise intestinal integrity and induce leaky gut in a variety of species. Therefore, the objectives of this study were to determine if heat stress (HS) directly or indirectly (via reduced feed intake) increases intestinal permeability in growing pigs. We hypothesized that an increased heat-load causes physiological alterations to the intestinal epithelium, resulting in compromised barrier integrity and altered intestinal function that contributes to the overall severity of HS-related illness. Crossbred gilts (n=48, 43±4 kg BW) were housed in constant climate controlled rooms in individual pens and exposed to 1) thermal neutral (TN) conditions (20°C, 35-50% humidity) with ad libitum intake, 2) HS conditions (35°C, 20-35% humidity) with ad libitum feed intake, or 3) pair-fed in TN conditions (PFTN) to eliminate confounding effects of dissimilar feed intake. Pigs were sacrificed at 1, 3, or 7 d of environmental exposure and jejunum samples were mounted into modified Ussing chambers for assessment of transepithelial electrical resistance (TER) and intestinal fluorescein isothiocyanate (FITC)-labeled lipopolysaccharide (LPS) permeability (expressed as apparent permeability coefficient, APP). Further, gene and protein markers of intestinal integrity and stress were assessed. Irrespective of d of HS exposure, plasma endotoxin levels increased 45% (P<0.05) in HS compared with TN pigs, while jejunum TER decreased 30% (P<0.05) and LPS APP increased 2-fold (P<0.01). Furthermore, d 7 HS pigs tended (P=0.06) to have increased LPS APP (41%) compared with PFTN controls. Lysozyme and alkaline phosphatase activity decreased (46 and 59%, respectively; P<0.05) over time in HS pigs, while the immune cell marker, myeloperoxidase activity, was increased (P<0.05) in the jejunum at d 3 and 7. These results indicate that both HS and reduced feed intake decrease intestinal integrity and increase endotoxin permeability. We hypothesize that these events may lead to increased inflammation, which might contribute to reduced pig performance during warm summer months.


Nutrition & Metabolism | 2013

Dietary oil composition differentially modulates intestinal endotoxin transport and postprandial endotoxemia

Venkatesh Mani; James H. Hollis; Nicholas K. Gabler

BackgroundIntestinal derived endotoxin and the subsequent endotoxemia can be considered major predisposing factors for diseases such as atherosclerosis, sepsis, obesity and diabetes. Dietary fat has been shown to increase postprandial endotoxemia. Therefore, the aim of this study was to assess the effects of different dietary oils on intestinal endotoxin transport and postprandial endotoxemia using swine as a model. We hypothesized that oils rich in saturated fatty acids (SFA) would augment, while oils rich in n-3 polyunsaturated fatty acids (PUFA) would attenuate intestinal endotoxin transport and circulating concentrations.MethodsPostprandial endotoxemia was measured in twenty four pigs following a porridge meal made with either water (Control), fish oil (FO), vegetable oil (VO) or coconut oil (CO). Blood was collected at 0, 1, 2, 3 and 5 hours postprandial and measured for endotoxin. Furthermore, ex vivo ileum endotoxin transport was assessed using modified Ussing chambers and intestines were treated with either no oil or 12.5% (v/v) VO, FO, cod liver oil (CLO), CO or olive oil (OO). Ex vivo mucosal to serosal endotoxin transport permeability (Papp) was then measured by the addition of fluorescent labeled-lipopolysaccharide.ResultsPostprandial serum endotoxin concentrations were increased after a meal rich in saturated fatty acids and decreased with higher n-3 PUFA intake. Compared to the no oil control, fish oil and CLO which are rich in n-3 fatty acids reduced ex vivo endotoxin Papp by 50% (P < 0.05). Contrarily, saturated fatty acids increased the Papp by 60% (P = 0.008). Olive and vegetable oils did not alter intestinal endotoxin Papp.ConclusionOverall, these results indicate that saturated and n-3 PUFA differentially regulate intestinal epithelial endotoxin transport. This may be associated with fatty acid regulation of intestinal membrane lipid raft mediated permeability.


Journal of Animal Science | 2013

Intestinal integrity, endotoxin transport and detoxification in pigs divergently selected for residual feed intake

Venkatesh Mani; A. J. Harris; Aileen F. Keating; Thomas E. Weber; Jack C. M. Dekkers; Nicholas K. Gabler

ABSTRACT Microbes and microbial components potentially impact the performance of pigs through immune stimulation and altered metabolism. These immune modulating factors can include endotoxin from gram negative bacterial outer membrane component, commonly referred to as lipopolysaccharide (LPS). In this study, our objective was to examine the relationship between intestinal barrier integrity, endotoxin and inflammation with feed efficiency (FE), using pig lines divergently selected for residual feed intake (RFI) as a model. Twelve gilts (62 ± 3 kg BW) from the low RFI (LRFI, more efficient) and 12 from the high RFI (HRFI, less efficient) were used. Individual performance data was recorded for 5 wk. At the end of the experimental period, ADFI of LRFI pigs was less (P < 0.001), ADG not different between the 2 lines (P = 0.72) but the G:F of LRFI pigs was greater than for HRFI pigs (P = 0.019). Serum endotoxin concentration (P < 0.01) and the acute phase protein haptoglobin (P < 0.05) were greater in HRFI pigs. Transepithelial resistance of the ileum, transport of fluorescein isothiocyanate labeled-Dextran and-LPS in ileum and colon, as well as tight junction protein mRNA expression in ileum, did not differ between the lines, indicating the 2 lines did not differ in transport characteristics at the intestinal level. Ileum inflammatory markers, myeloperoxidase (P < 0.05) and IL-8 (P < 0.10), were found to be greater in HRFI pigs. Alkaline phosphatase (ALP) activity was significantly increased in the LRFI pigs in ileum and liver tissues and negatively correlated with blood endotoxin (P < 0.05). Lysozyme activity in the liver was not different between the lines; however, the LRFI pigs had a twofold greater lysozyme activity in ileum (P < 0.05). Despite the difference in their activity, ALP or lysozyme mRNA expression was not different between the lines in either tissue. Decreased endotoxin and inflammatory markers and the enhanced activities of antimicrobial enzymes in the LRFI line may not fully explain the difference in the FE between the lines, but they have the potential to prevent the growth potential in HRFI pigs. Further studies are needed to identify the other mechanisms that may contribute to the greater endotoxin and acute phase proteins in the HRFI pigs and the greater FE in the LRFI pigs.


Journal of Animal Science | 2012

Heat stress reduces barrier function and alters intestinal metabolism in growing pigs.

Sarah Pearce; Venkatesh Mani; Rebecca L. Boddicker; Jay S. Johnson; Thomas E. Weber; Jason W. Ross; L. H. Baumgard; Nicholas K. Gabler

High ambient temperature exposure can cause major reductions in intestinal function, pig performance, and, if severe enough, mortality. Therefore, our objective was to examine how acute heat stress (HS) alters growing pig intestinal integrity and metabolism. Individually penned crossbred gilts and barrows (46 ± 6 kg BW) were exposed to either thermal neutral (TN; 21°C; 35 to 50% humidity; n = 8) or HS conditions (35°C; 24 to 43% humidity; n = 8) for 24 h. All pigs had ad libitum access to feed and water. Rectal temperature (Tr), respiration rates (RR), BW, and feed intake (FI) were measured. Pigs were killed after 24 h of environmental exposure and freshly isolated ileum and colon samples were mounted into modified Ussing chambers. Segments were analyzed for glucose and glutamine nutrient transport and barrier integrity [transepithelial electrical resistance (TER) and fluorescein isothiocyanate-labeled dextran transport]. As expected, pigs exposed to HS had an increase in Tr (39.3 vs. 40.9°C; P < 0.01) and RR (52 vs. 119 breaths per minute; P < 0.05). Heat stress decreased FI (53%; P < 0.05) and BW (-2.2 kg; P < 0.05) compared to TN pigs. Compared to TN pigs, mucosal heat shock protein 70 increased (101%; P < 0.05) whereas intestinal integrity was compromised in the HS pigs (ileum and colon TER decreased 52 and 24%, respectively; P < 0.05). Furthermore, serum endotoxin concentrations increased 200% due to HS (P = 0.05). Intestinal glucose transport and blood glucose were elevated due to HS (P < 0.05). However, ileal sucrase and maltase activities decreased in HS pigs (30 and 24%, respectively; P < 0.05). Altogether, these data indicate that high ambient heat loads reduce intestinal integrity and increase circulating endotoxin and stress in pigs. Furthermore, glucose transport and digestive capacity are altered during acute HS.


Temperature (Austin, Tex.) | 2014

Effects of dairy products on intestinal integrity in heat-stressed pigs.

M. Victoria Sanz Fernandez; Sarah Pearce; Venkatesh Mani; Nicholas K. Gabler; L.E. Metzger; J. F. Patience; Robert P. Rhoads; L. H. Baumgard

Heat stress compromises intestinal integrity which may partially explain its negative effects on animal health and productivity. Research suggests that challenged intestinal barrier function improves with dietary dairy products in various models. Thus, the study objective was to evaluate the effects of bovine milk whey protein (WP) and colostral whey protein (CWP) on intestinal integrity in heat-stressed pigs. Crossbred gilts (39 ± 3 kg body weight) were fed 1 of 4 diets (n = 8 pigs/diet): control (Ct), control diet containing an 80% WP and 20% CWP product (WP80), control diet containing a 98% WP and 2% CWP product (WP98), and control diet containing a 100% WP product (WP100). After 7d on experimental diets, pigs were exposed to constant heat stress conditions (32 °C) for 24h. There were no treatment differences in growth or body temperature indices prior to heat stress. During heat exposure, both rectal temperature and respiration rate increased (+0.85 °C and 3-fold, respectively; P < 0.01), and feed intake and body weight decreased (44% and -0.5kg, respectively; P < 0.01), but neither variable was affected by dietary treatments. Plasma L-lactate and D-lactate concentrations increased (36%; P < 0.01) and tended to increase (19%; P = 0.09) with heat stress. After 24h of heat exposure, WP100-fed pigs had lower plasma D-lactate relative to Ct-fed pigs. Ileal transepithelial electrical resistance was decreased (37%; P = 0.02) in WP80 pigs, compared with controls. No differences were detected in other intestinal integrity ex vivo measurements. These data demonstrate that dietary WP and CWP did not mitigate intestinal integrity dysfunction during severe heat stress.


Animal Genetics | 2016

Genome-wide methylation profile following prenatal and postnatal dietary omega-3 fatty acid supplementation in pigs

Rebecca L. Boddicker; James E. Koltes; E. R. Fritz-Waters; L. Koesterke; N. Weeks; T. Yin; Venkatesh Mani; D. Nettleton; James M. Reecy; L. H. Baumgard; J. D. Spencer; Nicholas K. Gabler; Jason W. Ross


Animal Industry Report | 2012

Bitter Compounds Decrease Gastric Emptying and Influence Intestinal Nutrient Transport

Venkatesh Mani; James H. Hollis; Nicholas K. Gabler


Archive | 2012

Understanding intestinal lipopolysaccharide permeability and associated inflammation

Venkatesh Mani

Collaboration


Dive into the Venkatesh Mani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas E. Weber

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge