Thomas E. Weber
United States Department of Agriculture
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas E. Weber.
PLOS ONE | 2013
Sarah Pearce; Venkatesh Mani; Rebecca L. Boddicker; Jay S. Johnson; Thomas E. Weber; Jason W. Ross; Robert P. Rhoads; L. H. Baumgard; Nicholas K. Gabler
Excessive heat exposure reduces intestinal integrity and post-absorptive energetics that can inhibit wellbeing and be fatal. Therefore, our objectives were to examine how acute heat stress (HS) alters intestinal integrity and metabolism in growing pigs. Animals were exposed to either thermal neutral (TN, 21°C; 35–50% humidity; n = 8) or HS conditions (35°C; 24–43% humidity; n = 8) for 24 h. Compared to TN, rectal temperatures in HS pigs increased by 1.6°C and respiration rates by 2-fold (P<0.05). As expected, HS decreased feed intake by 53% (P<0.05) and body weight (P<0.05) compared to TN pigs. Ileum heat shock protein 70 expression increased (P<0.05), while intestinal integrity was compromised in the HS pigs (ileum and colon TER decreased; P<0.05). Furthermore, HS increased serum endotoxin concentrations (P = 0.05). Intestinal permeability was accompanied by an increase in protein expression of myosin light chain kinase (P<0.05) and casein kinase II-α (P = 0.06). Protein expression of tight junction (TJ) proteins in the ileum revealed claudin 3 and occludin expression to be increased overall due to HS (P<0.05), while there were no differences in claudin 1 expression. Intestinal glucose transport and blood glucose were elevated due to HS (P<0.05). This was supported by increased ileum Na+/K+ ATPase activity in HS pigs. SGLT-1 protein expression was unaltered; however, HS increased ileal GLUT-2 protein expression (P = 0.06). Altogether, these data indicate that HS reduce intestinal integrity and increase intestinal stress and glucose transport.
Journal of Animal Science | 2013
Sarah Pearce; Venkatesh Mani; Thomas E. Weber; Robert P. Rhoads; J. F. Patience; L. H. Baumgard; Nicholas K. Gabler
Heat stress can compromise intestinal integrity and induce leaky gut in a variety of species. Therefore, the objectives of this study were to determine if heat stress (HS) directly or indirectly (via reduced feed intake) increases intestinal permeability in growing pigs. We hypothesized that an increased heat-load causes physiological alterations to the intestinal epithelium, resulting in compromised barrier integrity and altered intestinal function that contributes to the overall severity of HS-related illness. Crossbred gilts (n=48, 43±4 kg BW) were housed in constant climate controlled rooms in individual pens and exposed to 1) thermal neutral (TN) conditions (20°C, 35-50% humidity) with ad libitum intake, 2) HS conditions (35°C, 20-35% humidity) with ad libitum feed intake, or 3) pair-fed in TN conditions (PFTN) to eliminate confounding effects of dissimilar feed intake. Pigs were sacrificed at 1, 3, or 7 d of environmental exposure and jejunum samples were mounted into modified Ussing chambers for assessment of transepithelial electrical resistance (TER) and intestinal fluorescein isothiocyanate (FITC)-labeled lipopolysaccharide (LPS) permeability (expressed as apparent permeability coefficient, APP). Further, gene and protein markers of intestinal integrity and stress were assessed. Irrespective of d of HS exposure, plasma endotoxin levels increased 45% (P<0.05) in HS compared with TN pigs, while jejunum TER decreased 30% (P<0.05) and LPS APP increased 2-fold (P<0.01). Furthermore, d 7 HS pigs tended (P=0.06) to have increased LPS APP (41%) compared with PFTN controls. Lysozyme and alkaline phosphatase activity decreased (46 and 59%, respectively; P<0.05) over time in HS pigs, while the immune cell marker, myeloperoxidase activity, was increased (P<0.05) in the jejunum at d 3 and 7. These results indicate that both HS and reduced feed intake decrease intestinal integrity and increase endotoxin permeability. We hypothesize that these events may lead to increased inflammation, which might contribute to reduced pig performance during warm summer months.
Journal of Animal Science | 2013
Venkatesh Mani; A. J. Harris; Aileen F. Keating; Thomas E. Weber; Jack C. M. Dekkers; Nicholas K. Gabler
ABSTRACT Microbes and microbial components potentially impact the performance of pigs through immune stimulation and altered metabolism. These immune modulating factors can include endotoxin from gram negative bacterial outer membrane component, commonly referred to as lipopolysaccharide (LPS). In this study, our objective was to examine the relationship between intestinal barrier integrity, endotoxin and inflammation with feed efficiency (FE), using pig lines divergently selected for residual feed intake (RFI) as a model. Twelve gilts (62 ± 3 kg BW) from the low RFI (LRFI, more efficient) and 12 from the high RFI (HRFI, less efficient) were used. Individual performance data was recorded for 5 wk. At the end of the experimental period, ADFI of LRFI pigs was less (P < 0.001), ADG not different between the 2 lines (P = 0.72) but the G:F of LRFI pigs was greater than for HRFI pigs (P = 0.019). Serum endotoxin concentration (P < 0.01) and the acute phase protein haptoglobin (P < 0.05) were greater in HRFI pigs. Transepithelial resistance of the ileum, transport of fluorescein isothiocyanate labeled-Dextran and-LPS in ileum and colon, as well as tight junction protein mRNA expression in ileum, did not differ between the lines, indicating the 2 lines did not differ in transport characteristics at the intestinal level. Ileum inflammatory markers, myeloperoxidase (P < 0.05) and IL-8 (P < 0.10), were found to be greater in HRFI pigs. Alkaline phosphatase (ALP) activity was significantly increased in the LRFI pigs in ileum and liver tissues and negatively correlated with blood endotoxin (P < 0.05). Lysozyme activity in the liver was not different between the lines; however, the LRFI pigs had a twofold greater lysozyme activity in ileum (P < 0.05). Despite the difference in their activity, ALP or lysozyme mRNA expression was not different between the lines in either tissue. Decreased endotoxin and inflammatory markers and the enhanced activities of antimicrobial enzymes in the LRFI line may not fully explain the difference in the FE between the lines, but they have the potential to prevent the growth potential in HRFI pigs. Further studies are needed to identify the other mechanisms that may contribute to the greater endotoxin and acute phase proteins in the HRFI pigs and the greater FE in the LRFI pigs.
Journal of Animal Science | 2012
Sarah Pearce; Venkatesh Mani; Rebecca L. Boddicker; Jay S. Johnson; Thomas E. Weber; Jason W. Ross; L. H. Baumgard; Nicholas K. Gabler
High ambient temperature exposure can cause major reductions in intestinal function, pig performance, and, if severe enough, mortality. Therefore, our objective was to examine how acute heat stress (HS) alters growing pig intestinal integrity and metabolism. Individually penned crossbred gilts and barrows (46 ± 6 kg BW) were exposed to either thermal neutral (TN; 21°C; 35 to 50% humidity; n = 8) or HS conditions (35°C; 24 to 43% humidity; n = 8) for 24 h. All pigs had ad libitum access to feed and water. Rectal temperature (Tr), respiration rates (RR), BW, and feed intake (FI) were measured. Pigs were killed after 24 h of environmental exposure and freshly isolated ileum and colon samples were mounted into modified Ussing chambers. Segments were analyzed for glucose and glutamine nutrient transport and barrier integrity [transepithelial electrical resistance (TER) and fluorescein isothiocyanate-labeled dextran transport]. As expected, pigs exposed to HS had an increase in Tr (39.3 vs. 40.9°C; P < 0.01) and RR (52 vs. 119 breaths per minute; P < 0.05). Heat stress decreased FI (53%; P < 0.05) and BW (-2.2 kg; P < 0.05) compared to TN pigs. Compared to TN pigs, mucosal heat shock protein 70 increased (101%; P < 0.05) whereas intestinal integrity was compromised in the HS pigs (ileum and colon TER decreased 52 and 24%, respectively; P < 0.05). Furthermore, serum endotoxin concentrations increased 200% due to HS (P = 0.05). Intestinal glucose transport and blood glucose were elevated due to HS (P < 0.05). However, ileal sucrase and maltase activities decreased in HS pigs (30 and 24%, respectively; P < 0.05). Altogether, these data indicate that high ambient heat loads reduce intestinal integrity and increase circulating endotoxin and stress in pigs. Furthermore, glucose transport and digestive capacity are altered during acute HS.
Journal of Animal Science | 2012
A. Rakhshandeh; Jack C. M. Dekkers; B. J. Kerr; Thomas E. Weber; J. English; Nicholas K. Gabler
Little is known of the consequences of divergent selection for residual feed intake (RFI) on intestinal digestion capacity, particularly during immune system stimulation (ISS). Our objective was to evaluate the impact of ISS and divergent selection for RFI on apparent ileal digestibility (AID) and apparent fecal digestibility (AFD) of nutrients and intestinal nutrient active transport and barrier function. Twenty-eight gilts (63 ± 4 kg BW) from low RFI (LRFI; n = 14) and high RFI (HRFI; n = 14) Yorkshire lines were randomly selected from the Iowa State University RFI herd. Following adaptation, 8 pigs in each line were injected intramuscularly and every 48 h for 7 d with increasing amounts of Escherichia coli lipopolysaccharide (ISS+). Remaining pigs were injected with saline (ISS-). Pigs were then euthanized and ileal digesta was collected for measuring AID of nutrients. Fecal samples were collected on a daily basis and pooled for measuring AFD of nutrients. A segment of ileum was used to measure nutrient transport and transepithelial resistance (TER) and/or barrier integrity by Ussing chambers. No effects of line or its interaction with ISS on AID of CP (N × 6.25) and OM, TER, and active nutrients transport were observed. However, ISS decreased (P < 0.05) and tended to (P < 0.1) decrease AID of CP and OM, respectively. Decrease in AFD of CP as result of ISS was greater in the LRFI line compared to the HRFI line (P < 0.05). Relative to ISS-, active glucose and P transport was greater in ISS+ pigs (P < 0.05). Genetic selection for LRFI increases the AFD but has no effect on AID of nutrients. It also reduces the total tract digestive capacity of growing pigs during ISS. Immune system stimulation affects both AID and AFD of dietary CP.
Journal of Animal Science | 2014
P. Liu; B. J. Kerr; Chi Chen; Thomas E. Weber; L. J. Johnston; G. C. Shurson
The objective of this experiment was to evaluate peroxidation in 4 lipids, each with 3 levels of peroxidation. Lipid sources were corn oil (CN), canola oil (CA), poultry fat, and tallow. Peroxidation levels were original lipids (OL), slow-oxidized lipids (SO), and rapid-oxidized lipids (RO). To produce peroxidized lipids, OL were either heated at 95°C for 72 h to produce SO or heated at 185°C for 7 h to produce RO. Five indicative measurements (peroxide value [PV], p-anisidine value [AnV], thiobarbituric acid reactive substances [TBARS] concentration, hexanal concentration, 4-hydroxynonenal [HNE] concentration, and 2,4-decadienal [DDE]) and 2 predictive tests (active oxygen method [AOM] stability and oxidative stability index [OSI]) were performed to quantify the level of oxidation of the subsequent 12 lipids with varying levels of peroxidation. Analysis showed that a high PV accurately indicated the high level of lipid peroxidation, but a moderate or low PV may be misleading due to the unstable characteristics of hydroperoxides as indicated by the unchanged PV of rapidly oxidized CN and CA compared to their original state (OL). However, additional tests, which measure secondary peroxidation products such as AnV, TBARS, hexanal, HNE, and DDE, may provide a better indication of lipid peroxidation than PV for lipids subjected to a high level of peroxidation. Similar to PV analysis, these tests may also not provide irrefutable information regarding the extent of peroxidation because of the volatile characteristics of secondary peroxidation products and the changing stage of lipid peroxidation. For the predictive tests, AOM accurately reflected the increased lipid peroxidation caused by SO and RO as indicated by the increased AOM value in CN and CA but not in poultry fat and tallow, which indicated a potential disadvantage of the AOM test. Oxidative stability index successfully showed the increased lipid peroxidation caused by SO and RO in all lipids, but it too may have disadvantages similar to AnV, TBARS, hexanal, DDE, and HNE because OSI directly depends on quantification of the volatile secondary peroxidation products. To accurately analyze the peroxidation damage in lipids, measurements should be determined at appropriate time intervals by more than 1 test and include different levels of peroxidation products simultaneously.
Journal of Animal Science | 2008
B. J. Kerr; Cherie J. Ziemer; Thomas E. Weber; S. L. Trabue; B. L. Bearson; G. C. Shurson; M. H. Whitney
The objective of this study was to compare the use of thermal combustion (CNS) and inductively coupled plasma (ICP) to measure the total S content in plant-, animal-, and mineral-based feedstuffs, and to provide concentrations of other macro- and micro-minerals contained in these feedstuffs. Forty-five feedstuffs (464 total samples) were obtained from suppliers as well as swine feed and pet food manufacturers throughout the United States. Mineral data from IPC analysis were summarized on a DM basis using sample mean and SD, whereas the comparison of total S content between CNS and ICP was examined by bivariate plot and correspondence correlation. Analyses of a wide range of feedstuffs by CNS and ICP for total S were comparable for all but a few feedstuffs. For potassium iodide and tribasic copper chloride, ICP estimated total S to be lower than when analyzed by CNS (bias = 2.51 +/- 0.15 SE, P < 0.01). In contrast, for defluorinated phosphate and limestone, ICP estimated total S to be greater than when analyzed by CNS (bias = -1.46 +/- 0.51 SE, P < 0.01). All other samples had similar estimates of total S, whether analyzed by CNS or ICP. As expected, S composition varied greatly among feedstuffs. For total S, plant-based feedstuffs generally had lower total S compared with animal-based feedstuffs, whereas minerals supplied in sulfate form had the greatest concentration of total S. In addition to total S, mineral composition data are provided for all feedstuffs as obtained by ICP analysis. Within specific feedstuffs, mineral composition was quite variable, potentially due to low concentrations in the feed-stuff causing high mathematical variation or due to the source of feedstock obtained. In general, analyzed values of P were similar to previous tabular values. These data provide feed formulators a database from which modifications in dietary minerals can be accomplished and from which mineral requirements can be met more precisely to reduce losses of minerals into the environment.
Journal of Animal Science | 2008
Lindsey S. Alexander; A. Qu; Sara A. Cutler; Avanika Mahajan; Steven M. Lonergan; Max F. Rothschild; Thomas E. Weber; Brian J. Kerr; Chad H. Stahl
Concern over the environmental effect of P excretion from pig production has led to reduced dietary P supplementation. To examine how genetics influence P utilization, 94 gilts sired by 2 genetic lines (PIC337 and PIC280) were housed individually and fed either a P-adequate diet (PA) or a 20% P-deficient diet (PD) for 14 wk. Initially and monthly, blood samples were collected and BW recorded after an overnight fast. Growth performance and plasma indicators of P status were determined monthly. At the end of the trial, carcass traits, meat quality, bone strength, and ash percentage were determined. Pigs fed the PD diet had decreased (P < 0.05) plasma P concentrations and poorer G:F (P < 0.05) over the length of the trial. After 4 wk on trial, pigs fed the PD diet had increased (P < 0.05) plasma 1,25(OH)(2)D(3) and decreased (P < 0.05) plasma parathyroid hormone compared with those fed the PA diet. At the end of the trial, pigs fed the PD diet had decreased (P < 0.05) BW, HCW, and percentage fat-free lean and tended to have decreased LM area (P = 0.06) and marbling (P = 0.09) and greater (P = 0.12) 10th-rib backfat than pigs fed the PA diet. Additionally, animals fed the PD diet had weaker bones and also decreased (P < 0.05) ash percentage and increased (P < 0.05) concentrations of 1alpha-hydroxylase and parathyroid hormone receptor mRNA in kidney tissue. Regardless of dietary treatment, PIC337-sired pigs consumed more feed and gained more BW than their PIC280-sired counterparts (P < 0.05) during the study. The PIC337-sired pigs also had greater (P < 0.05) HCW, larger (P < 0.01) LM area, and tended to have (P = 0.07) greater dressing percentage. Meat from the PIC337-sired pigs also tended to have greater (P = 0.12) concentrations of lactate but decreased (P = 0.07) concentrations of total glucose units 24 h postslaughter. Although plasma 1,25(OH)(2)D(3) concentrations were elevated (P < 0.05) in all the animals fed the PD diet, this elevation due to P deficiency tended (P = 0.09) to be greater in the PIC337-sired pigs after 12 wk on the treatment. The PIC337-sired pigs had stronger (P < 0.01) bones with greater ash percentage than the PIC280-sired pigs. The difference in the strength of the radii between the PIC337-sired pigs fed the PA and PD diets was greater than their PIC280-sired counterparts, which resulted in sire line x treatment interactions (P < 0.05). These data indicate differing mechanisms of P utilization between these genetic lines. Elucidating these mechanisms may lead to strategies to increase efficiency of growth in a more environmentally friendly manner.
Journal of Animal Science | 2014
Thomas E. Weber; D. M. van Sambeek; Nicholas K. Gabler; B. J. Kerr; S. Moreland; S. Johal; M. S. Edmonds
Humic acid (MFG) and fat-protected butyric acid (BA) has been shown to modulate energy metabolism and inflammation. Therefore, the objectives of this study were to determine the effects of MFG and BA, alone and in combination, on growth performance and response to lipopolysaccharide (LPS)-induced inflammation in young pigs. An experiment was conducted using 448 crossbred weanling pigs, which were stratified by gender and BW and were randomly assigned to 1 of 4 dietary treatments in a 2 × 2 factorial arrangement consisting of control and MFG with or without BA. The pigs were housed at a density of 8 pigs/pen and with 14 pens/dietary treatment. Growth performance and feed intake were assessed for 35 d. To assess the inflammation-related properties of MFG and BA, on d 36 a subset of 48 pigs from each treatment was intramuscular injected with either sterile saline or Escherichia coli LPS (20 μg/kg BW; E. coli serotype O55:B5) for 4 h in a 2 × 2 × 2 factorial arrangement (± LPS, ± MFG and ± BA; n = 6 pigs/treatment group) to assess their febrile response as well as serum, liver, and muscle cytokine responses. Results from this study showed that neither BA nor MFG alone or in combination altered pig ADG, ADFI, and G:F. Moreover, in the presence of LPS, the combination of MFG and BA resulted in a 62% decrease (P = 0.08) in serum cortisol compared to when neither compound was added to the diet. In contrast, serum IGF-I was increased (P < 0.01) by 59% from the use of both MFG and BA, as opposed to when neither was added, with pigs subjected to LPS. However, both MFG and BA inclusion appear to have a complex role in modulating different aspects of the immune response to LPS, particularly when both are fed in combination. Humic acid also appeared to play a role in decreasing oxidative stress.
Journal of Animal Science | 2018
Emily D. Mauch; Jennifer Young; Nick V. L. Serão; W L Hsu; J. F. Patience; B. J. Kerr; Thomas E. Weber; N. K. Gabler; Jack C. M. Dekkers
Residual feed intake (RFI) is the difference between observed and predicted feed intake of an animal, based on growth and maintenance requirements. In Yorkshire pigs, divergent selection for increased (Low RFI) and decreased (High RFI) RFI was carried out over 10 generations (G) while feeding a corn- and soybean-meal-based, higher-energy, lower-fiber (HELF) diet. In G8 to G10, representing 4 replicates, barrows and gilts (n = 649) of the RFI lines were fed the HELF diet and a diet incorporating coproducts that were lower in energy and higher in dietary fiber (LEHF). The diets differed in ME, 3.32 vs. 2.87 Mcal/kg, and in neutral detergent fiber (NDF), 9.4% vs. 25.9%, respectively. The impact of the LEHF diet on 1) performance and growth, 2) diet digestibility, 3) genetic parameter estimates, and 4) responses to selection for RFI, when fed the HELF, was assessed. In general, the LEHF diet reduced the performance of both lines. When fed the HELF diet, the Low RFI pigs had lower (P < 0.05) ADFI (-12%), energy intake (-12%), ADG (-6%), and backfat depth (-12%); similar (P > 0.05) loin muscle area (LMA; +5%); and greater (P < 0.05) feed efficiency (i.e., 8% higher G:F and 7% lower RFI) than the High RFI line. These patterns of line differences were still present under the LEHF diet but differences for ADFI (-11%), energy intake (-10%), G:F (+2%), and RFI (-6%) were reduced compared to the HELF diet. Apparent total tract digestibility (ATTD) of the HELF and LEHF diets was assessed using 116 barrows and gilts from G8. When fed the HELF diet, ATTD of DM, GE, N, and NDF were similar between lines (P ≥ 0.27), but when fed the LEHF diet, the Low RFI pigs had greater digestibility (7%, 7%, 10%, and 32%) than the High RFI line (P ≤ 0.04). To measure responses to selection for RFI and estimate genetic parameters, data from all 10 generations were used (HELF; n = 2,310; LEHF, n = 317). Heritability estimates of performance traits ranged from 0.19 to 0.63, and genetic correlations of traits between diets were high and positive, ranging from 0.87 (RFI) to 0.99 (LMA). By G10, RFI in the Low RFI line was 3.86 and 1.50 genetic SD lower than in the High RFI line when fed the HELF and LEHF diets, respectively. Taken together, the results of this study demonstrate that responses to selection for RFI when fed a HELF diet are not fully realized when pigs are fed an extremely LEHF diet. Thus, feeding diets that differ from those used for selection may not maximize genetic potential for feed efficiency.