Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Victor Pinheiro Feitosa is active.

Publication


Featured researches published by Victor Pinheiro Feitosa.


Trends in Biotechnology | 2015

Advances in Dental Materials through Nanotechnology: Facts, Perspectives and Toxicological Aspects

Gislaine Cristina Padovani; Victor Pinheiro Feitosa; Salvatore Sauro; Franklin R. Tay; Gabriela Durán; Amauri J. Paula; Nelson Durán

Nanotechnology is currently driving the dental materials industry to substantial growth, thus reflecting on improvements in materials available for oral prevention and treatment. The present review discusses new developments in nanotechnology applied to dentistry, focusing on the use of nanomaterials for improving the quality of oral care, the perspectives of research in this arena, and discussions on safety concerns regarding the use of dental nanomaterials. Details are provided on the cutting-edge properties (morphological, antibacterial, mechanical, fluorescence, antitumoral, and remineralization and regeneration potential) of polymeric, metallic and inorganic nano-based materials, as well as their use as nanocluster fillers, in nanocomposites, mouthwashes, medicines, and biomimetic dental materials. Nanotoxicological aspects, clinical applications, and perspectives for these nanomaterials are also discussed.


Dental Materials | 2013

Experimental etch-and-rinse adhesives doped with bioactive calcium silicate-based micro-fillers to generate therapeutic resin–dentin interfaces

Andrea Corrado Profeta; Francesco Mannocci; Richard M. Foxton; Tim Watson; Victor Pinheiro Feitosa; B. De Carlo; Mongiorgi R; Giovanni Valdrè; Salvatore Sauro

OBJECTIVES This study aimed at evaluating the therapeutic bioactive effects on the bond strength of three experimental bonding agents containing modified Portland cement-based micro-fillers applied to acid-etched dentin and submitted to aging in simulated body fluid solution (SBS). Confocal laser (CLSM) and scanning electron microscopy (SEM) were also performed. METHODS A type-I ordinary Portland cement was tailored using different compounds such as sodium-calcium-aluminum-magnesium silicate hydroxide (HOPC), aluminum-magnesium-carbonate hydroxide hydrates (HCPMM) and titanium oxide (HPCTO) to create three bioactive micro-fillers. A resin blend mainly constituted by Bis-GMA, PMDM and HEMA was used as control (RES-Ctr) or mixed with each micro-filler to create three experimental bonding agents: (i) Res-HOPC, (ii) Res-HCPMM and (iii) Res-HPCTO. The bonding agents were applied onto 37% H3PO4-etched dentin and light-cured for 30s. After build-ups, they were prepared for micro-tensile bond strength (μTBS) and tested after 24h or 6 months of SBS storage. SEM analysis was performed after de-bonding, while CLSM was used to evaluate the ultra-morphology/nanoleakage and the mineral deposition at the resin-dentin interface. RESULTS High μTBS values were achieved in all groups after 24h. Only Res-HOPC and Res-HCPMM showed stable μTBS after SBS storage (6 months). All the resin-dentin interfaces created using the bonding agents containing the bioactive micro-fillers tested in this study showed an evident reduction of nanoleakage and mineral deposition after SBS storage. CONCLUSION Resin bonding systems containing specifically tailored Portland cement micro-fillers may promote a therapeutic mineral deposition within the hybrid layer and increase the durability of the resin-dentin bond.


Journal of Dental Research | 2014

Can the Hydrophilicity of Functional Monomers Affect Chemical Interaction

Victor Pinheiro Feitosa; Fabrício Aulo Ogliari; B. Van Meerbeek; Tim Watson; Kumiko Yoshihara; Aline Oliveira Ogliari; Mário Alexandre Coelho Sinhoreti; Américo Bortolazzo Correr; Giuseppe Cama; Salvatore Sauro

The number of carbon atoms and/or ester/polyether groups in spacer chains may influence the interaction of functional monomers with calcium and dentin. The present study assessed the chemical interaction and bond strength of 5 standard-synthesized phosphoric-acid ester functional monomers with different spacer chain characteristics, by atomic absorption spectroscopy (AAS), ATR-FTIR, thin-film x-ray diffraction (TF-XRD), scanning electron microscopy (SEM), and microtensile bond strength (μTBS). The tested functional monomers were 2-MEP (two-carbon spacer chain), 10-MDP (10-carbon), 12-MDDP (12-carbon), MTEP (more hydrophilic polyether spacer chain), and CAP-P (intermediate hydrophilicity ester spacer). The intensity of monomer-calcium salt formation measured by AAS differed in the order of 12-MDDP=10-MDP>CAP-P>MTEP>2-MEP. FTIR and SEM analyses of monomer-treated dentin surfaces showed resistance to rinsing for all monomer-dentin bonds, except with 2-MEP. TF-XRD confirmed the weaker interaction of 2-MEP. Highest µTBS was observed for 12-MDDP and 10-MDP. A shorter spacer chain (2-MEP) of phosphate functional monomers induced formation of unstable monomer-calcium salts, and lower chemical interaction and dentin bond strength. The presence of ester or ether groups within longer spacer carbon chains (CAP-P and MTEP) may affect the hydrophilicity, μTBS, and also the formation of monomer-calcium salts.


Journal of Dentistry | 2012

Effects of different photo-polymerization protocols on resin–dentine μTBS, mechanical properties and cross-link density of a nano-filled resin composite

Victor Pinheiro Feitosa; Ana Paula Piovezan Fugolin; Américo Bortolazzo Correr; Lourenço Correr-Sobrinho; Simonides Consani; Tim Watson; Mário Alexandre Coelho Sinhoreti; Salvatore Sauro

OBJECTIVES To evaluate the effects of four different light-curing protocols on the microtensile bond strength (μTBS), ultimate tensile strength (UTS), Knoop micro-hardness (KH) and cross-link density (CLD) of a nano-filled resin composite. METHODS Filtek Supreme XT (3M-ESPE) was used for the entire experiments following four light-curing approaches: ST, standard irradiance; HI, high irradiance; PD, pulse delay; SS, soft start. The specimens were submitted to different storage periods (24h or 6 months), cut into match-sticks and subsequently submitted to μTBS testing. Hourglass specimens were also prepared for UTS and KH. Cylindrical specimens were prepared for the CLD evaluation after absolute ethanol challenge. The results were statistically analyzed with a two-way ANOVA and Tukeys test (α=0.05). RESULTS For UTS and KH, continuous irradiance (PD and SS) induced statistically higher results (p<0.05) both after 24h and 6 months of water storage compared to ST and HI groups. However, a drop in UTS and KH was obtained after 6 months in all groups. The μTBS was not affected by the different light-curing approaches and, no statistical differences (p>0.05) were observed between 24h and 6 months storage. The CLD evaluation showed a statistical drop in KH after 24h of ethanol storage for PD and SS (step-curing protocols) compared to those attained in continuous mode (ST and HI). CONCLUSION The soft-start mode may improve the UTS and KH of nano-filled resin composites without compromising the resin-dentine μTBS. However, both the step-curing protocols may reduce the cross-link density of the composite polymeric network. CLINICAL SIGNIFICANCE High irradiances photo-polymerization may be adequate for direct aesthetic restorations such as veneers and onlays. Meanwhile, the soft start protocol would seem more appropriate for the photo-polymerization of high c-factors class I and II restorations.


Brazilian Dental Journal | 2015

Surface Treatments for Repair of Feldspathic, Leucite - and Lithium Disilicate-Reinforced Glass Ceramics Using Composite Resin

Christian Alencar Neis; Nadine Luísa Guimarães Albuquerque; Ivo de Souza Albuquerque; Érica Alves Gomes; Celso Bernardo de Souza-Filho; Victor Pinheiro Feitosa; Aloísio Oro Spazzin; Ataís Bacchi

The aim of this study was to evaluate the efficacy of different surface conditioning methods on the microtensile bond strength of a restorative composite repair in three types of dental ceramics: lithium disilicate-reinforced, leucite-reinforced and feldspathic. Twelve blocks were sintered for each type of ceramic (n=3) and stored for 3 months in distilled water at 37 °C. The bonding surface of ceramics was abraded with 600-grit SiC paper. Surface treatments for each ceramic were: GC (control) - none; GDB - diamond bur #30 µm; GHF - hydrofluoric acid (10%); GT- tribochemical silica coating (45-μm size particles). Treatments were followed by cleaning with phosphoric acid 37% for 20 s + silane + adhesive. The composite resin was used as restorative material. After repair, samples were subjected to thermocycled ageing (10,000 cycles between 5 °C and 55 °C for 30 s). Thereafter, the samples were sectioned into 1.0 mm2 sticks and tested for microtensile bond strength with 0.5 mm/min crosshead speed. Data were compared by two-way ANOVA and Tukeys test (α=0.05). The superficial wear with diamond bur proved to be suitable for feldspathic porcelain and for leucite-reinforced glass ceramic while hydrofluoric acid-etching is indicated for repairs in lithium disilicate-reinforced ceramic; tribochemical silica coating is applicable to leucite-reinforced ceramic. Predominance of adhesive failures was observed (>85% in all groups). In conclusion, the success of surface treatments depends on the type of ceramic to be repaired.


Journal of Dental Research | 2014

Zoledronate and Ion-releasing Resins Impair Dentin Collagen Degradation

Arzu Tezvergil-Mutluay; R. Seseogullari-Dirihan; Victor Pinheiro Feitosa; F.R. Tay; Tim Watson; D.H. Pashley; Salvatore Sauro

This study analyzed the amounts of solubilized telopeptides cross-linked carboxyterminal telopeptide of type I collagen (ICTP) and C-terminal crosslinked telopeptide of type I collagen (CTX) derived from matrix-metalloproteinases (MMPs) and cysteine cathepsins (CTPs) subsequent to application of a filler-free (Res.A) or an ion-releasing resin (Res.B) to ethylenediaminetetraacetic acid (EDTA)-demineralized dentin with or without zoledronate-containing primer (Zol-primer) pre-treatment. The chemical modification induced following treatments and artificial saliva (AS) storage was also analyzed through attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Totally EDTA-demineralized specimens were infiltrated with Res.A or Res.B with or without Zol-primer pre-treatment, light-cured, and immersed in AS for up to 4 wk. ICTP release was reduced following infiltration with Res.B and further reduced when Res.B was used with Zol-primer; remarkable phosphate mineral uptake was attained after AS storage. CTX release was increased in Res.A- and Res.B-treated dentin. However, when Zol-primer was used with Res.A, the CTX release fell significantly compared to the other tested resin-infiltration methods. In conclusion, zoledronate offers an additional inhibitory effect to the ion-releasing resins in MMP-mediated collagen degradation. However, Zol-primer induces a modest reduction in CTX release only when used with resin-based systems containing no ion-releasing fillers.


Dental Materials | 2014

Methacrylate bonding to zirconia by in situ silica nanoparticle surface deposition

Aline Oliveira-Ogliari; Fabrício Mezzomo Collares; Victor Pinheiro Feitosa; Salvatore Sauro; Fabrício Aulo Ogliari; Rafael R. Moraes

OBJECTIVE This study introduces an innovative method to enhance adhesion of methacrylate-based cements to yttria-stabilized zirconia (Y-TZP) by means of a silica-nanoparticle deposition process. METHODS Two alkoxide organic precursors, tetraethyl-orthosilicate (TEOS) and zirconium tert-butoxide (ZTB) were diluted in hexane at different concentrations in order to obtain several experimental materials to enhance deposition of a SiO(x) reactive layer to Y-TZP. This deposition was attained via sintering alkoxide precursors directly on pre-sintered zirconia (infiltration method—INF) or application on the surface of fully sintered zirconia (coating method—COA). Untreated specimens and a commercial tribochemical silica coating were also tested as controls and all the treated Y-TZP specimens were analyzed using SEM-EDX. Specimens were bonded using silane, adhesive and dual-cure luting cement and submitted to shear bond strength test after different water storage periods (24 h, 3-, 6- and 12-months). RESULTS SEM-EDX revealed Y-TZP surface covered by silica nanoclusters. The morphology of silica-covered Y-TZP surfaces was influenced by sintering method, employed to deposit nanoclusters. High bond strength (MPa) was observed when using COA method; highest TEOS percentage achieved the greatest bond strengths to Y-TZP surface (36.7±6.3 at 24 h). However, bonds stability was dependent on ZTB presence (32.9±9.7 at 3 months; 32.3±7.1 at 6 months). Regarding INF method, the highest and more stable resin-zirconia bond strength was attained when using experimental solutions containing TEOS and no ZTB. Both sintering methods tested in this study were able to achieve a bonding performance similar to that of classic tribochemical strategies. SIGNIFICANCE This study demonstrates that it is possible to achieve a reliable and long-lasting bonding between yttria-stabilized zirconia ceramic and methacrylate-based cements when using this novel, simple, and cost-effective bonding approach.


Journal of Dentistry | 2014

The role of spacer carbon chain in acidic functional monomers on the physicochemical properties of self-etch dental adhesives

Victor Pinheiro Feitosa; Salvatore Sauro; Fabrício Aulo Ogliari; Jeffrey W. Stansbury; Guy Carpenter; Tim Watson; Mário Alexandre Coelho Sinhoreti; Américo Bortolazzo Correr

OBJECTIVES To evaluate the effects of acidic functional monomers with different hydrophilicity and spacer carbon chain length on the degree of conversion (DC), wettability (contact angle), water sorption (WS) and ultimate tensile strength (UTS) of experimental one-step self-etch adhesives (1-SEAs). METHODS A series of standard resin blends was prepared with each formulation containing 15mol% of each acidic monomer. The structural variations of the acidic monomers were MEP (spacer chain with 2 carbons), MDP (10-carbons), MDDP (12-carbons), MTEP (more hydrophilic polyether spacer) and CAP-P (intermediate hydrophilicity ester spacer). Dumbbell-shaped and disc specimens were prepared and tested for UTS and WS, respectively. DC was assessed by FTIR, while the wettability of each 1-SEA was evaluated on glass slides and flat dentine surfaces. Results were analysed with one-way ANOVA and Tukeys test (p<0.05). RESULTS The outcomes showed lower UTS for CAP-P, control blend and MEP than MTEP, MDDP and MDP (p<0.05). The degree of conversion was statistically similar for all resins (p=0.122). On dentine, the wettability was higher (lower contact angle) with the most hydrophilic monomer MTEP. Higher WS was attained using MTEP. Different lengths of the spacer chains did not result in different wettability and WS (p>0.05). CONCLUSION At similar molar percentage, different acidic functional monomers induced similar degree of conversion and different UTS when included in a 1-SEA. However, the inclusion of highly hydrophilic monomer may increase the wettability on dentine and the WS.


Journal of The Mechanical Behavior of Biomedical Materials | 2012

Evaluation of the micro-mechanical strength of resin bonded–dentin interfaces submitted to short-term degradation strategies

Victor Pinheiro Feitosa; Salvatore Sauro; Tim Watson; Américo Bortolazzo Correr; Raquel Osorio; Manuel Toledano; Lourenço Correr-Sobrinho; Mário Alexandre Coelho Sinhoreti

The aim of this study was to evaluate the microtensile bond strength (μTBS) and confocal micropermeability of resin bonded-dentin specimens created using two representative two-step/self-etch adhesives submitted to short-term period degradation strategies such as simulated pulpal pressure, thermo- or mechanical-cycling challenges. Clearfil SE Bond (CSE) and Silorane adhesive (SIL) were bonded to flat deep dentin from seventy extracted human molars and light-cured for 10 s. Composite build-ups were constructed using with Filtek Z350 XT and Filtek P90 respectively. The specimens of each adhesive group were subjected to three different accelerated aging methods: (1) thermo-cycling challenge (5000 cycles); (2) mechanical-cycling load (200,000 cycles); (3) experiment and (4) conventional method for simulated pulpal pressure (20 cm H₂O). Control resin-bonded specimens were stored in distilled water for 24 h. μTBS and confocal microscopy (CLSM) micropermeability evaluation were performed and the results were analyzed using Two-way ANOVA and Tukeys tests (α=0.05). The CLSM evaluation revealed micro-cracks within the Silorane-bonded dentin subsequent to mechanical-cycling load, whereas, the simulated pulpal pressure induced evident micropermeability in both bonding agents. Mechanical loading provides discernible bonding degradation in a short-term period in resin-bonded dentin created using two-step/self-etch adhesives. However, simulated pulpal pressure may reduce the sealing ability of self-etch adhesives causing greater water uptake within the resin-dentin interface.


Journal of Dentistry | 2013

Dicalcium phosphate (CaHPO4·2H2O) precipitation through ortho- or meta-phosphoric acid-etching: effects on the durability and nanoleakage/ultra-morphology of resin-dentine interfaces.

Victor Pinheiro Feitosa; Maria Giulia Bazzocchi; Angelo Putignano; Giovanna Orsini; Arlinda Luzi Luzi; Mário Alexandre Coelho Sinhoreti; Tim Watson; Salvatore Sauro

OBJECTIVES To compare the effects of two etching procedures using meta-phosphoric (MPA) or ortho-phosphoric acid (OPA) on dentine demineralisation, resin-dentine bonds durability and interface nanoleakage/ultra-morphology. METHODS Middle-dentine specimens were etched using 37% OPA (15s) or 40% MPA (60s) and submitted to infrared spectroscopy (FTIR) or ultra-morphology dye-assisted (calcium-staining) confocal microscopy (Ca-CLSM). A three-step etch-and-rinse adhesive was formulated, applied onto dentine and light-cured for 30s before composite build-up. After 24h, the dentine-bonded specimens were cut into 1mm(2) beams; half were immediately submitted to microtensile bond strength (μTBS) and half stored in DW for six months. The μTBS results were analysed with repeated-measures ANOVA and Tukeys test (p<0.05). Further teeth were bonded and prepared for interface nanoleakage/ultra-morphology confocal evaluation. RESULTS FTIR and Ca-CLSM analyses showed dicalcium phosphate dihydrate (Brushite) precipitation in MPA-etched dentine and on the bottom (front of demineralisation) of the OPA-etched dentine. Statistical analysis showed similar μTBS for both etching procedures after 24h. The μTBS of specimens in OPA-group dropped significantly (p<0.05) after six month; the specimens in the MPA group showed no statistically difference (p>0.05). CLSM depicted no evident sign of nanoleakage within the resin-dentine interface of the MPA-treated specimens, while the specimens in OPA-group presented intense nanoleakage and interface degradation. CONCLUSION The use of MPA (60s) as an alternative dentine conditioning agent in etch-and-rinse bonding procedures may be a suitable strategy to create more durable resin-dentine bonds.

Collaboration


Dive into the Victor Pinheiro Feitosa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabriel Flores Abuna

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ataís Bacchi

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Fabrício Aulo Ogliari

Universidade Federal de Pelotas

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge