Victoria Barton
University of Liverpool
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Victoria Barton.
Molecules | 2010
Paul M. O'Neill; Victoria Barton; Stephen A. Ward
Despite international efforts to ‘roll back malaria’ the 2008 World Malaria Report revealed the disease still affects approximately 3 billion people in 109 countries; 45 within the WHO African region. The latest report however does provide some ‘cautious optimism’; more than one third of malarious countries have documented greater than 50% reductions in malaria cases in 2008 compared to 2000. The goal of the Member States at the World Health Assembly and ‘Roll Back Malaria’ (RBM) partnership is to reduce the numbers of malaria cases and deaths recorded in 2000 by 50% or more by the end of 2010. Although malaria is preventable it is most prevalent in poorer countries where prevention is difficult and prophylaxis is generally not an option. The burden of disease has increased by the emergence of multi drug resistant (MDR) parasites which threatens the use of established and cost effective antimalarial agents. After a major change in treatment policies, artemisinins are now the frontline treatment to aid rapid clearance of parasitaemia and quick resolution of symptoms. Since artemisinin and its derivatives are eliminated rapidly, artemisinin combination therapies (ACT’s) are now recommended to delay resistance mechanisms. In spite of these precautionary measures reduced susceptibility of parasites to the artemisinin-based component of ACT’s has developed at the Thai-Cambodian border, a historical ‘hot spot’ for MDR parasite evolution and emergence. This development raises serious concerns for the future of the artemsinins and this is not helped by controversy related to the mode of action. Although a number of potential targets have been proposed the actual mechanism of action remains ambiguous. Interestingly, artemisinins have also shown potent and broad anticancer properties in cell lines and animal models and are becoming established as anti-schistosomal agents. In this review we will discuss the recent evidence explaining bioactivation and potential molecular targets in the chemotherapy of malaria and cancer.
Angewandte Chemie | 2010
Paul M. O'Neill; Richard Amewu; Gemma L. Nixon; Fatima Bousejra ElGarah; Mathirut Mungthin; James Chadwick; Alison E. Shone; Livia Vivas; Hollie Lander; Victoria Barton; Sant Muangnoicharoen; Patrick G. Bray; Jill Davies; B. Kevin Park; Sergio Wittlin; Reto Brun; Michael Preschel; Kesheng Zhang; Stephen A. Ward
Artemisinin (1) is an extract of the Chinese wormwood Artemisia annua and has been used since ancient times to treat malaria. Today, semisynthetic derivatives artesunate (2) and artemether (3) are used clinically in drug combinations (ACT; artemisinin-based combination therapy). However, first-generation analogues (e.g. 2 and 3) have a limited availability, high cost, and poor oral bioavailability (Scheme 1a). In addition to these drawbacks there have been recent reports of high failure rates associated with ACTs suggesting the possibility of clinical artemisinin resistance along the Thai–Cambodian border. In the light of these observations there is an urgent need to develop alternative endoperoxide-based therapies. The crucial structural functionality within artemisinin and synthetic 1,2,4-trioxanes is the endoperoxide bridge. Recently a series of molecules based on an ozonide structure were developed from which the candidate OZ277 was shown to have impressive antimalarial activity profiles in vitro and in rodent models of malaria. However, the recent
Current Opinion in Chemical Biology | 2010
Victoria Barton; Nicholas Fisher; Giancarlo A. Biagini; Stephen A. Ward; Paul M. O'Neill
The cytochrome bc(1) complex is a key mitochondrial enzyme that catalyses transfer of electrons maintaining the membrane potential of mitochondria. Currently, atovaquone is the only drug in clinical use targeting the Plasmodium falciparum bc(1) complex. The rapid emergence of resistance to atovaquone resulted in a costly combination with proguanil (Malarone), limiting its widespread use in resource-poor disease-endemic areas. Cheaper alternatives that can overcome resistance are desperately required. Here we describe recent advances of bc(1)-targeted inhibitors that include hydroxynaphthoquinones (atovaquone analogues), pyridones (clodipol analogues), acridine related compounds (acridinediones and acridones) and quinolones. Significantly, many of these developmental compounds demonstrate little cross resistance with atovaquone-resistant parasite strains, and selected classes have excellent oral activity profiles in rodent models of malaria.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Hanafy M. Ismail; Victoria Barton; Matthew Phanchana; Sitthivut Charoensutthivarakul; Michael H. L. Wong; Janet Hemingway; Giancarlo A. Biagini; Paul M. O’Neill; Stephen A. Ward
Significance The mechanism of action of the artemisinin (ART) class of antimalarial drugs, the most important antimalarial drug class in use today, remains controversial, despite more than three decades of intensive research. We have developed an unbiased chemical proteomic approach using a suite of ART activity-based protein profiling probes to identify proteins within the malaria parasite that are alkylated by ART, including proteins involved in glycolysis, hemoglobin metabolism, and redox defense. The data point to a pleiotropic mechanism of drug action for this class and offer a strategy for investigating resistance mechanisms to ART-based drugs as well as mechanisms of action of other endoperoxide-based drugs. The artemisinin (ART)-based antimalarials have contributed significantly to reducing global malaria deaths over the past decade, but we still do not know how they kill parasites. To gain greater insight into the potential mechanisms of ART drug action, we developed a suite of ART activity-based protein profiling probes to identify parasite protein drug targets in situ. Probes were designed to retain biological activity and alkylate the molecular target(s) of Plasmodium falciparum 3D7 parasites in situ. Proteins tagged with the ART probe can then be isolated using click chemistry before identification by liquid chromatography–MS/MS. Using these probes, we define an ART proteome that shows alkylated targets in the glycolytic, hemoglobin degradation, antioxidant defense, and protein synthesis pathways, processes essential for parasite survival. This work reveals the pleiotropic nature of the biological functions targeted by this important class of antimalarial drugs.
Bioorganic & Medicinal Chemistry Letters | 2009
Nuna C. Araújo; Victoria Barton; M. Jones; Paul A. Stocks; Stephen A. Ward; Jill Davies; Patrick G. Bray; Alison E. Shone; Maria Lurdes Santos Cristiano; Paul M. O'Neill
A novel series of semi-synthetic trioxaquines and synthetic trioxolaquines were prepared, in moderate to good yields. Antimalarial activity was evaluated against both the chloroquine-sensitive 3D7 and resistant K1 strain of Plasmodium falciparum and both series of compounds were shown to be active in the low nanomolar range. For comparison the corresponding 9-amino acridine analogues were also prepared and shown to have low nanomolar activity like their quinoline counterparts.
Journal of Medicinal Chemistry | 2010
Victoria Barton; Steven A. Ward; James Chadwick; Alasdair Hill; Paul M. O'Neill
The semisynthetic artemisinin derivatives such as artesunate and artemether, along with the fully synthetic endoperoxide antimalarials (e.g., OZ277, Nature 2004, 430, 900-904), are believed to mediate their antimalarial effects by iron-induced formation of carbon-centered radicals capable of alkylating heme and/or protein. Here, we describe the design and synthesis of a series of biotinylated endoperoxide probe molecules for use in proteomic studies. The target molecules include derivatives of the artemisinin and OZ families, and we demonstrate that these conjugates express nanomolar in vitro activity versus cultured strains of Plasmodium falciparum. We also describe the synthesis of chemically cleavable linked conjugates designed to enable mild elution of labeled proteins during target protein identification.
Parasitology | 2014
Paul A. Stocks; Victoria Barton; Thomas Antoine; Giancarlo A. Biagini; Stephen A. Ward; Paul M. O'Neill
Due to an increased need for new antimalarial chemotherapies that show potency against Plasmodium falciparum, researchers are targeting new processes within the parasite in an effort to circumvent or delay the onset of drug resistance. One such promising area for antimalarial drug development has been the parasite mitochondrial electron transport chain (ETC). Efforts have been focused on targeting key processes along the parasite ETC specifically the dihydroorotate dehydrogenase (DHOD) enzyme, the cytochrome bc 1 enzyme and the NADH type II oxidoreductase (PfNDH2) pathway. This review summarizes the most recent efforts in antimalarial drug development reported in the literature and describes the evolution of these compounds.
Malaria Journal | 2010
Steve A. Ward; Nicholas Fisher; Alasdair Hill; Alison Mbekeani; Alison E. Shone; Gemma L. Nixon; Paul A. Stocks; Peter Gibbons; Richard Amewu; David W Hong; Victoria Barton; Chandra Pidathala; James Chadwick; Louise Le Pensee; Ashley J. Warman; Raman Sharma; Neil G. Berry; Paul M. O'Neill; Giancarlo A. Biagini
The mitochondrial respiratory chain of the malaria parasite Plasmodium falciparum differs from that of its human host in that it lacks a canonical protonmotive NADH:ubiquinone oxidoreductase (Complex I), containing instead a single sub-unit, non-protonmotive Ndh2, similar to that found in plant mitochondria, fungi and some bacteria [1,2]. As such, the P. falciparum Ndh 2 (PfNdh2) is a potentially attractive anti-malarial chemotherapeutic target. Using an E.coli NADH dehydrogenase knockout strain (ANN0222, ndh::tet nuoB::nptI-sacRB) we have developed a heterologous expression system for PfNdh2, facilitating its physicochemical and enzymological characterisation [2]. PfNdh2 represents a metabolic choke point in the respiratory chain of P. falciparum mitochondria and is the focus of a drug discovery programme towards the development of a novel therapy for uncomplicated malaria. Here we describe a miniaturised spectrophotometric assay for recombinant PfNdh2 (steady state NADH oxidation and ubiquinone reduction monitored at 340 nm and 283 nm respectively) with robust assay performance measures that has been utilised for the high throughput screening (HTS) of small molecule inhibitors. The objectives of the HTS were twofold: (i) Increase the number of selective PfNdh2 inhibitors and (ii) to expand the number of inhibitor chemotypes. At the time of screening, only one proof of concept molecule, 1-hydroxy-2-dodecyl-4-(1H)quinolone (HDQ), was known to have PfNdh2 inhibitory activity (IC50=70 nM) [3,4]. HDQ was used to initiate a primary similarity-based screen of 1000 compounds from a compound collection of 750,000 compounds (curated by Biofocus-DPI). Chemoinformatics methodology was applied to the hits from this initial phase in order to perform a hit expansion screen on a further ~16,000 compounds. Application of this chemoinformatic strategy allowed us to cover ~16% diversity whilst screening just ~2% of the compound collection. The HTS resulted in a hit rate of 0.29% and 1 50 compounds were progressed for potency against PfNdh2. Of these compounds, 50 were considered active with IC50s ranging from 100 nM to 40 μM. Currently seven distinct chemotypes are being progressed from hit to lead using traditional synthetic medicinal chemistry strategies.
Angewandte Chemie | 2016
Hanafy M. Ismail; Victoria Barton; Matthew Panchana; Sitthivut Charoensutthivarakul; Giancarlo A. Biagini; Stephen A. Ward; Paul M. O'Neill
In spite of the recent increase in endoperoxide antimalarials under development, it remains unclear if all these chemotypes share a common mechanism of action. This is important since it will influence cross-resistance risks between the different classes. Here we investigate this proposition using novel clickable 1,2,4-trioxolane activity based protein-profiling probes (ABPPs). ABPPs with potent antimalarial activity were able to alkylate protein target(s) within the asexual erythrocytic stage of Plasmodium falciparum (3D7). Importantly, comparison of the alkylation fingerprint with that generated from an artemisinin ABPP equivalent confirms a highly conserved alkylation profile, with both endoperoxide classes targeting proteins in the glycolytic, hemoglobin degradation, antioxidant defence, protein synthesis and protein stress pathways, essential biological processes for plasmodial survival. The alkylation signatures of the two chemotypes show significant overlap (ca. 90 %) both qualitatively and semi-quantitatively, suggesting a common mechanism of action that raises concerns about potential cross-resistance liabilities.
Archive | 2011
Paul M. O’Neill; Victoria Barton; Stephen A. Ward; James Chadwick
For several decades, the 4-aminoquinolines chloroquine (CQ) and amodiaquine (AQ) were considered the most important drugs for the control and eradication of malaria. The success of this class has been based on excellent clinical efficacy, limited host toxicity, ease of use and simple, cost-effective synthesis. Importantly, chloroquine therapy is affordable enough for use in the developing world. However, its value has seriously diminished since the emergence of widespread parasite resistance in every region where P. falciparum is prevalent. Recent medicinal chemistry campaigns have resulted in the development of short-chain chloroquine analogues (AQ-13), organometallic antimalarials (ferroquine) and the “fusion” antimalarial trioxaquine (SAR116242). Projects to reduce the toxicity of AQ have resulted in the development of metabolically stable AQ analogues (isoquine/N-tert-butyl isoquine). In addition to these developments, older 4-aminoquinolines such as piperaquine and the related aza-acridine derivative pyronaridine continue to be developed. It is the aim of this chapter to review 4-aminoquinoline structure–activity relationships and medicinal chemistry developments in the field and consider the future therapeutic value of CQ and AQ.