Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Victoria Lupson is active.

Publication


Featured researches published by Victoria Lupson.


Neuropsychopharmacology | 2004

Acute ketamine administration alters the brain responses to executive demands in a verbal working memory task: an FMRI study.

Rebekah Honey; Garry D. Honey; C. O'Loughlin; Sam R. Sharar; D Kumaran; Edward T. Bullmore; David K. Menon; Tim Donovan; Victoria Lupson; R Bisbrown-Chippendale; P. C. Fletcher

We have used functional MRI to determine the effects of ketamine on brain systems activated in association with a working memory task. Healthy volunteers received intravenous infusions of placebo, ketamine at 50 ng/ml plasma concentration, and ketamine at 100 ng/ml. They were scanned while carrying out a verbal working memory task in which we varied the executive requirements (manipulation vs maintenance processes) and the mnemonic load (three vs five presented letters). We previously showed that ketamine produces a specific behavioral impairment in the manipulation task. In the current study, we modified tasks in order to match performance across drug and placebo conditions, and used an event-related fMRI design, allowing us to remove unsuccessful trials from the analysis. Our results suggest a task-specific effect of ketamine on working memory in a brain system comprising frontal cortex, parietal cortex, and putamen. When subjects are required to manipulate presented letters into alphabetical order, as opposed to maintaining them in the order in which they were presented, ketamine is associated with significantly greater activity in this system, even under these performance-matched conditions. No significant effect of ketamine was seen in association with increasing load. This suggests that our findings are not explicable in terms of a nonspecific effect of ketamine when task difficulty is increased. Rather, our findings provide evidence that the predominant effects of low, subdissociative doses of ketamine are upon the control processes engaged by the manipulation task. Furthermore, we have shown that ketamines effects may be elucidated by fMRI even when overt behavioral measures show no evidence of impairment.


PLOS ONE | 2013

In Vivo Quantitative Susceptibility Mapping (QSM) in Alzheimer's Disease

Julio Acosta-Cabronero; Guy B. Williams; Arturo Cardenas-Blanco; Robert Arnold; Victoria Lupson; Peter J. Nestor

Background This study explores the magnetostatic properties of the Alzheimers disease brain using a recently proposed, magnetic resonance imaging, postprocessed contrast mechanism. Quantitative susceptibility mapping (QSM) has the potential to monitor in vivo iron levels by reconstructing magnetic susceptibility sources from field perturbations. However, with phase data acquired at a single head orientation, the technique relies on several theoretical approximations and requires fast-evolving regularisation strategies. Methods In this context, the present study describes a complete methodological framework for magnetic susceptibility measurements with a review of its theoretical foundations. Findings and Significance The regional and whole-brain cross-sectional comparisons between Alzheimers disease subjects and matched controls indicate that there may be significant magnetic susceptibility differences for deep brain nuclei – particularly the putamen – as well as for posterior grey and white matter regions. The methodology and findings described suggest that the QSM method is ready for larger-scale clinical studies.


JAMA Neurology | 2016

Pathophysiologic Mechanisms of Cerebral Ischemia and Diffusion Hypoxia in Traumatic Brain Injury.

Tonny Veenith; Eleanor L. Carter; Thomas Geeraerts; Julia Grossac; Virginia Newcombe; Joanne Outtrim; Gloria S Gee; Victoria Lupson; Robert Smith; Franklin I. Aigbirhio; Tim D. Fryer; Young T. Hong; David K. Menon; Jonathan P. Coles

IMPORTANCE Combined oxygen 15-labeled positron emission tomography (15O PET) and brain tissue oximetry have demonstrated increased oxygen diffusion gradients in hypoxic regions after traumatic brain injury (TBI). These data are consistent with microvascular ischemia and are supported by pathologic studies showing widespread microvascular collapse, perivascular edema, and microthrombosis associated with selective neuronal loss. Fluorine 18-labeled fluoromisonidazole ([18F]FMISO), a PET tracer that undergoes irreversible selective bioreduction within hypoxic cells, could confirm these findings. OBJECTIVE To combine [18F]FMISO and 15O PET to demonstrate the relative burden, distribution, and physiologic signatures of conventional macrovascular and microvascular ischemia in early TBI. DESIGN, SETTING, AND PARTICIPANTS This case-control study included 10 patients who underwent [18F]FMISO and 15O PET within 1 to 8 days of severe or moderate TBI. Two cohorts of 10 healthy volunteers underwent [18F]FMISO or 15O PET. The study was performed at the Wolfson Brain Imaging Centre of Addenbrookes Hospital. Cerebral blood flow, cerebral blood volume, cerebral oxygen metabolism (CMRO2), oxygen extraction fraction, and brain tissue oximetry were measured in patients during [18F]FMISO and 15O PET imaging. Similar data were obtained from control cohorts. Data were collected from November 23, 2007, to May 22, 2012, and analyzed from December 3, 2012, to January 6, 2016. MAIN OUTCOMES AND MEASURES Estimated ischemic brain volume (IBV) and hypoxic brain volume (HBV) and a comparison of their spatial distribution and physiologic signatures. RESULTS The 10 patients with TBI (9 men and 1 woman) had a median age of 59 (range, 30-68) years; the 2 control cohorts (8 men and 2 women each) had median ages of 53 (range, 41-76) and 45 (range, 29-59) years. Compared with controls, patients with TBI had a higher median IBV (56 [range, 9-281] vs 1 [range, 0-11] mL; P < .001) and a higher median HBV (29 [range, 0-106] vs 9 [range, 1-24] mL; P = .02). Although both pathophysiologic tissue classes were present within injured and normal appearing brains, their spatial distributions were poorly matched. When compared with tissue within the IBV compartment, the HBV compartment showed similar median cerebral blood flow (17 [range, 11-40] vs 14 [range, 6-22] mL/100 mL/min), cerebral blood volume (2.4 [range, 1.6- 4.2] vs 3.9 [range, 3.4-4.8] mL/100 mL), and CMRO2 (44 [range, 27-67] vs 71 [range, 34-88] μmol/100 mL/min) but a lower oxygen extraction fraction (38% [range, 29%-50%] vs 89% [range, 75%-100%]; P < .001), and more frequently showed CMRO2 values consistent with irreversible injury. Comparison with brain tissue oximetry monitoring suggested that the threshold for increased [18F]FMISO trapping is probably 15 mm Hg or lower. CONCLUSIONS AND RELEVANCE Tissue hypoxia after TBI is not confined to regions with structural abnormality and can occur in the absence of conventional macrovascular ischemia. This physiologic signature is consistent with microvascular ischemia and is a target for novel neuroprotective strategies.


PLOS ONE | 2013

Inter subject variability and reproducibility of diffusion tensor imaging within and between different imaging sessions.

Tonny Veenith; Eleanor L. Carter; Julia Grossac; Virginia Newcombe; Joanne Outtrim; Victoria Lupson; Guy B. Williams; David K. Menon; Jonathan P. Coles

The aim of these studies was to provide reference data on intersubject variability and reproducibility of diffusion tensor imaging. Healthy volunteers underwent imaging on two occasions using the same 3T Siemens Verio magnetic resonance scanner. At each session two identical diffusion tensor sequences were obtained along with standard structural imaging. Fractional anisotropy, apparent diffusion coefficient, axial and radial diffusivity maps were created and regions of interest applied in normalised space. The baseline data from all 26 volunteers were used to calculate the intersubject variability, while within session and between session reproducibility were calculated from all the available data. The reproducibility of measurements were used to calculate the overall and within session 95% prediction interval for zero change. The within and between session reproducibility data were lower than the values for intersubject variability, and were different across the brain. The regional mean (range) coefficient of variation figures for within session reproducibility were 2.1 (0.9–5.5%), 1.2 (0.4–3.9%), 1.2 (0.4–3.8%) and 1.8 (0.4–4.3%) for fractional anisotropy, apparent diffusion coefficient, axial and radial diffusivity, and were lower than between session reproducibility measurements (2.4 (1.1–5.9%), 1.9 (0.7–5.7%), 1.7 (0.7–4.7%) and 2.4 (0.9–5.8%); p<0.001). The calculated overall and within session 95% prediction intervals for zero change were similar. This study provides additional reference data concerning intersubject variability and reproducibility of diffusion tensor imaging conducted within the same imaging session and different imaging sessions. These data can be utilised in interventional studies to quantify change within a single imaging session, or to assess the significance of change in longitudinal studies of brain injury and disease.


Journal of Cerebral Blood Flow and Metabolism | 2014

Use of Diffusion Tensor Imaging to Assess the Impact of Normobaric Hyperoxia within At-Risk Pericontusional Tissue after Traumatic Brain Injury

Tonny Veenith; Eleanor L. Carter; Julia Grossac; Virginia Newcombe; Joanne Outtrim; Sridhar Nallapareddy; Victoria Lupson; Marta Correia; Marius Ovidiu Mada; Guy B. Williams; David K. Menon; Jonathan P. Coles

Ischemia and metabolic dysfunction remain important causes of neuronal loss after head injury, and we have shown that normobaric hyperoxia may rescue such metabolic compromise. This study examines the impact of hyperoxia within injured brain using diffusion tensor imaging (DTI). Fourteen patients underwent DTI at baseline and after 1 hour of 80% oxygen. Using the apparent diffusion coefficient (ADC) we assessed the impact of hyperoxia within contusions and a 1cm border zone of normal appearing pericontusion, and within a rim of perilesional reduced ADC consistent with cytotoxic edema and metabolic compromise. Seven healthy volunteers underwent imaging at 21%, 60%, and 100% oxygen. In volunteers there was no ADC change with hyperoxia, and contusion and pericontusion ADC values were higher than volunteers (P<0.01). There was no ADC change after hyperoxia within contusion, but an increase within pericontusion (P<0.05). We identified a rim of perilesional cytotoxic edema in 13 patients, and hyperoxia resulted in an ADC increase towards normal (P=0.02). We demonstrate that hyperoxia may result in benefit within the perilesional rim of cytotoxic edema. Future studies should address whether a longer period of hyperoxia has a favorable impact on the evolution of tissue injury.


Journal of Magnetic Resonance Imaging | 2016

Multimodal MRI can identify perfusion and metabolic changes in the invasive margin of glioblastomas

Stephen J. Price; Adam Young; William J. Scotton; Jared Ching; Laila A. Mohsen; Natalie R. Boonzaier; Victoria Lupson; John R. Griffiths; Mary Anne McLean; Timothy J. Larkin

To use perfusion and magnetic resonance (MR) spectroscopy to compare the diffusion tensor imaging (DTI)‐defined invasive and noninvasive regions. Invasion of normal brain is a cardinal feature of glioblastomas (GBM) and a major cause of treatment failure. DTI can identify invasive regions.


PLOS ONE | 2014

Comparison of Inter Subject Variability and Reproducibility of Whole Brain Proton Spectroscopy

Tonny Veenith; Marius Ovidiu Mada; Eleanor L. Carter; Julia Grossac; Virginia Newcombe; Joanne Outtrim; Victoria Lupson; Sridhar Nallapareddy; Guy B. Williams; Sulaiman Sheriff; David K. Menon; Andrew A. Maudsley; Jonathan P. Coles

The aim of these studies was to provide reference data on intersubject variability and reproducibility of metabolite ratios for Choline/Creatine (Cho/Cr), N-acetyl aspartate/Choline (NAA/Cho) and N-acetyl aspartate/Creatine (NAA/Cr), and individual signal-intensity normalised metabolite concentrations of NAA, Cho and Cr. Healthy volunteers underwent imaging on two occasions using the same 3T Siemens Verio magnetic resonance scanner. At each session two identical Metabolic Imaging and Data Acquisition Software (MIDAS) sequences were obtained along with standard structural imaging. Metabolite maps were created and regions of interest applied in normalised space. The baseline data from all 32 volunteers were used to calculate the intersubject variability, while within session and between session reproducibility were calculated from all the available data. The reproducibility of measurements were used to calculate the overall and within session 95% prediction interval for zero change. The within and between session reproducibility data were lower than the values for intersubject variability, and were variable across the different brain regions. The within and between session reproducibility measurements were similar for Cho/Cr, NAA/Choline, Cho and Cr (11.8%, 11.4%, 14.3 and 10.6% vs. 11.9%, 11.4%, 13.5% and 10.5% respectively), but for NAA/Creatine and NAA between session reproducibility was lower (9.3% and 9.1% vs. 10.1% and 9.9%; p <0.05). This study provides additional reference data that can be utilised in interventional studies to quantify change within a single imaging session, or to assess the significance of change in longitudinal studies of brain injury and disease.


Radiology | 2017

Less Invasive Phenotype Found in Isocitrate Dehydrogenase-mutated Glioblastomas than in Isocitrate Dehydrogenase Wild-Type Glioblastomas: A Diffusion-Tensor Imaging Study

Stephen J. Price; Kieren Allinson; Hongxiang Liu; Natalie R. Boonzaier; Jiun-Lin Yan; Victoria Lupson; Timothy J. Larkin

Purpose To explore the diffusion-tensor (DT) imaging-defined invasive phenotypes of both isocitrate dehydrogenase (IDH-1)-mutated and IDH-1 wild-type glioblastomas. Materials and Methods Seventy patients with glioblastoma were prospectively recruited and imaged preoperatively. All patients provided signed consent, and the local research ethics committee approved the study. Patients underwent surgical resection, and tumor samples underwent immunohistochemistry for IDH-1 R132H mutations. DT imaging data were coregistered to the anatomic magnetic resonance study and reconstructed to provide the anisotropic and isotropic components of the DT. The invasive phenotype was determined by using previously published criteria and correlated with IDH-1 mutation status by using the Freeman-Halton extension of the Fisher exact probability test. Results Nine patients had an IDH-1 mutation and 61 had IDH-1 wild type. All of the patients with IDH-1 mutation had a minimally invasive DT imaging phenotype. Among the IDH-1 wild-type tumors, 42 of 61 (69%) were diffusively invasive glioblastomas, 14 of 61 (23%) were locally invasive, and five of 61 (8%) were minimally invasive (P < .001). Conclusion IDH-mutated glioblastomas have a less invasive phenotype compared with IDH wild type. This finding may have implications for individualizing the extent of surgical resection and radiation therapy volumes.


Scientific Reports | 2016

Simple and effective exercise design for assessing in vivo mitochondrial function in clinical applications using 31P magnetic resonance spectroscopy

Alison Sleigh; Victoria Lupson; Ajay Thankamony; David B. Dunger; David B. Savage; T. Adrian Carpenter; Graham J. Kemp

The growing recognition of diseases associated with dysfunction of mitochondria poses an urgent need for simple measures of mitochondrial function. Assessment of the kinetics of replenishment of the phosphocreatine pool after exercise using 31P magnetic resonance spectroscopy can provide an in vivo measure of mitochondrial function; however, the wider application of this technique appears limited by complex or expensive MR-compatible exercise equipment and protocols not easily tolerated by frail participants or those with reduced mental capacity. Here we describe a novel in-scanner exercise method which is patient-focused, inexpensive, remarkably simple and highly portable. The device exploits an MR-compatible high-density material (BaSO4) to form a weight which is attached directly to the ankle, and a one-minute dynamic knee extension protocol produced highly reproducible measurements of post-exercise PCr recovery kinetics in both healthy subjects and patients. As sophisticated exercise equipment is unnecessary for this measurement, our extremely simple design provides an effective and easy-to-implement apparatus that is readily translatable across sites. Its design, being tailored to the needs of the patient, makes it particularly well suited to clinical applications, and we argue the potential of this method for investigating in vivo mitochondrial function in new cohorts of growing clinical interest.


Scientific Reports | 2017

Normobaric hyperoxia does not improve derangements in diffusion tensor imaging found distant from visible contusions following acute traumatic brain injury

Tonny Veenith; Eleanor L. Carter; Julia Grossac; Virginia Newcombe; Joanne Outtrim; Sri Nallapareddy; Victoria Lupson; Marta Correia; Marius M. Mada; Guy B. Williams; David K. Menon; Jonathan P. Coles

We have previously shown that normobaric hyperoxia may benefit peri-lesional brain and white matter following traumatic brain injury (TBI). This study examined the impact of brief exposure to hyperoxia using diffusion tensor imaging (DTI) to identify axonal injury distant from contusions. Fourteen patients with acute moderate/severe TBI underwent baseline DTI and following one hour of 80% oxygen. Thirty-two controls underwent DTI, with 6 undergoing imaging following graded exposure to oxygen. Visible lesions were excluded and data compared with controls. We used the 99% prediction interval (PI) for zero change from historical control reproducibility measurements to demonstrate significant change following hyperoxia. Following hyperoxia DTI was unchanged in controls. In patients following hyperoxia, mean diffusivity (MD) was unchanged despite baseline values lower than controls (p < 0.05), and fractional anisotropy (FA) was lower within the left uncinate fasciculus, right caudate and occipital regions (p < 0.05). 16% of white and 14% of mixed cortical and grey matter patient regions showed FA decreases greater than the 99% PI for zero change. The mechanistic basis for some findings are unclear, but suggest that a short period of normobaric hyperoxia is not beneficial in this context. Confirmation following a longer period of hyperoxia is required.

Collaboration


Dive into the Victoria Lupson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge