Vijay S. Sharma
University of California, San Diego
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vijay S. Sharma.
Experimental Biology and Medicine | 2006
Kate E. Broderick; Prasanth Potluri; Shunhui Zhuang; Immo E. Scheffler; Vijay S. Sharma; Renate B. Pilz; Gerry R. Boss
Cyanide is a highly toxic agent that inhibits mitochondrial cytochrome-c oxidase, thereby depleting cellular ATP. it contributes to smoke inhalation deaths in fires and could be used as a weapon of mass destruction. Cobalamin (vitamin B12) binds cyanide with a relatively high affinity and is used in Europe to treat smoke inhalation victims. Cobinamide, the penultimate compound in cobalamin biosynthesis, binds cyanide with about 1010 greater affinity than cobalamin, and we found It was several-fold more effective than cobalamin in (i) reversing cyanide inhibition of oxidative phosphorylation in mammalian cells; (ii) rescuing mammalian cells and Drosophila melanogaster from cyanide toxicity; and (iii) reducing cyanide inhibition of Drosophila Malpighian tubule secretion. Cobinamide could be delivered by oral ingestion, inhalation, or injection to Drosophila, and it was as effective when administered up to 5 mins post-cyanide exposure as when given preexposure. We conclude that cobinamide is an effective cyanide detoxifying agent that has potential use as a cyanide antidote, both in smoke inhalation victims and in persons exposed to cyanide used as a weapon of mass destruction.
Journal of Biological Chemistry | 1997
Jürgen Scheele; Vladimir G. Kharitonov; Pavel Martásek; Linda J. Roman; Vijay S. Sharma; Bettie Sue Siler Masters; Douglas Magde
Interaction of CO with hemeproteins has physiological importance. This is especially true for nitric-oxide synthases (NOS), heme/flavoenzymes that produce ⋅NO and citrulline from l-arginine (Arg) and are inhibited by CO in vitro. The kinetics of CO ligation with both neuronal NOS and its heme domain module were determined in the presence and absence of tetrahydrobiopterin and Arg to allow comparison with other hemeproteins. Geminate recombination in the nanosecond time domain is followed by bimolecular association in the millisecond time domain. Complex association kinetics imply considerable heterogeneity but can be approximated with two forms, one fast (2–3 × 106 m −1 s−1) and another slow (2–4 × 104 m −1s−1). The relative proportions of the two forms vary with conditions. For the heme domain, fast forms dominate except in the presence of both tetrahydrobiopterin and Arg. In the holoenzyme, slow forms dominate except when both reagents are absent. Geminate recombination is substantial, ∼50%, only when fast forms predominate. Stopped-flow mixing found dissociation constants near 0.3 s−1. These data imply an equilibrium constant such that very little CO should bind at physiological conditions unless large CO concentrations are present locally.
Journal of Biomedical Optics | 2010
Matthew Brenner; Sari Mahon; Jangwoen Lee; Jae G. Kim; David Mukai; Seth Goodman; Kelly Kreuter; Rebecca Ahdout; Othman Mohammad; Vijay S. Sharma; William Blackledge; Gerry R. Boss
Our purpose is to compare cobinamide to hydroxocobalamin in reversing cyanide (CN)-induced physiologic effects in an animal model using diffuse optical spectroscopy (DOS). Cyanide poisoning is a major threat worldwide. Cobinamide is a novel molecule that can bind two molecules of cyanide, has a much higher binding affinity than hydroxocobalamin, and is more water soluble. We investigated the ability of equimolar doses of cobinamide and hydroxocobalamin to reverse the effects of cyanide exposure in an animal model monitored continuously by DOS. Cyanide toxicity was induced in 16 New Zealand white rabbits by intravenous infusion. Animals were divided into three groups: controls (n=5) received saline following cyanide, hydroxocobalamin (N=6) following cyanide, and cobinamide (N=5) following cyanide. Cobinamide caused significantly faster and more complete recovery of oxy- and deoxyhemoglobin concentrations in cyanide-exposed animals than hydroxocobalamin- or saline-treated animals, with a recovery time constant of 13.8+/-7.1 min compared to 75.4+/-25.1 and 76.4+/-42.7 min, for hydroxocobalamin- and saline-treated animals, respectively (p<0.0001). This study indicates that cobinamide more rapidly and completely reverses the physiologic effects of cyanide than equimolar doses of cobalamin at the dose used in this study, and CN effects and response can be followed noninvasively using DOS.
Annals of Emergency Medicine | 2010
Matthew Brenner; Jae G. Kim; Sari Mahon; Jangwoen Lee; Kelly Kreuter; William Blackledge; David Mukai; Steven E. Patterson; Othman Mohammad; Vijay S. Sharma; Gerry R. Boss
STUDY OBJECTIVE Exposure to cyanide in fires and industrial exposures and intentional cyanide poisoning by terrorists leading to mass casualties is an ongoing threat. Current treatments for cyanide poisoning must be administered intravenously, and no rapid treatment methods are available for mass casualty cyanide exposures. Cobinamide is a cobalamin (vitamin B(12)) analog with an extraordinarily high affinity for cyanide that is more water-soluble than cobalamin. We investigate the use of intramuscular cobinamide sulfite to reverse cyanide toxicity-induced physiologic changes in a sublethal cyanide exposure animal model and determine the ability of an intramuscular cobinamide sulfite injection to rapidly reverse the physiologic effects of cyanide toxicity. METHODS New Zealand white rabbits were given 10 mg sodium cyanide intravenously over 60 minutes. Quantitative diffuse optical spectroscopy and continuous-wave near-infrared spectroscopy monitoring of tissue oxyhemoglobin and deoxyhemoglobin concentrations were performed concurrently with blood cyanide level measurements and cobinamide levels. Immediately after completion of the cyanide infusion, the rabbits were injected intramuscularly with cobinamide sulfite (n=6) or inactive vehicle (controls, n=5). RESULTS Intramuscular administration led to rapid mobilization of cobinamide and was extremely effective at reversing the physiologic effects of cyanide on oxyhemoglobin and within deoxyhemoglobin extraction. Recovery time to 63% of their baseline values in the central nervous system occurred within a mean of 1,032 minutes in the control group and 9 minutes in the cobinamide group, with a difference of 1,023 minutes (95% confidence interval 116 to 1,874 minutes). In muscle tissue, recovery times were 76 and 24 minutes, with a difference of 52 minutes (95% confidence interval 7 to 98 minutes). RBC cyanide levels returned toward normal significantly faster in cobinamide sulfite-treated animals than in control animals. CONCLUSION Intramuscular cobinamide sulfite rapidly and effectively reverses the physiologic effects of cyanide poisoning, suggesting that a compact cyanide antidote kit can be developed for mass casualty cyanide exposures.
Experimental Biology and Medicine | 2007
Kate E. Broderick; Luis Alvarez; Mahesh Balasubramanian; Darrell D. Belke; Ayako Makino; Adriano Chan; Virgil L. Woods; Wolfgang H. Dillmann; Vijay S. Sharma; Renate B. Pilz; Timothy D. Bigby; Gerry R. Boss
A limited number of nitric oxide (NO)-generating drugs are available for clinical use for acute and chronic conditions. Most of these agents are organic nitrates, which do not directly release NO; tolerance to the drugs develops, in part, as a consequence of their conversion to NO. We synthesized nitrosyl-cobinamide (NO-Cbi) from cobinamide, a structural analog of cobalamin (vitamin B12). NO-Cbi is a direct NO-releasing agent that we found was stable in water, but under physiologic conditions, it released NO with a half-life of 30 mins to 1 h. We show in five different biological systems that NO-Cbi is an effective NO-releasing drug. First, in cultured rat vascular smooth muscle cells, NO-Cbi induced phosphorylation of vasodilator-stimulated phosphoprotein, a downstream target of cGMP and cGMP-dependent protein kinase. Second, in isolated Drosophila melanogaster Malpighian tubules, NO-Cbi–stimulated fluid secretion was similar to that stimulated by Deta-NONOate and a cGMP analog. Third, in isolated mouse hearts, NO-Cbi increased coronary flow much more potently than nitroglycerin. Fourth, in contracted mouse aortic rings, NO-Cbi induced relaxation, albeit to a lesser extent than sodium nitroprusside. Fifth, in intact mice, a single NO-Cbi injection rapidly reduced blood pressure, and blood pressure returned to normal after 45 mins; repeated NO-Cbi injections induced the expected fall in blood pressure. These studies indicate that NO-Cbi is a useful NO donor that can be used experimentally in the laboratory; moreover, it could be developed into a vasodilating drug for treating hypertension and potentially other diseases such as angina and congestive heart failure.
The Journal of Infectious Diseases | 2008
Kate E. Broderick; Adriano Chan; Maheswari Balasubramanian; Jake Feala; Sharon L. Reed; Markandeswar Panda; Vijay S. Sharma; Renate B. Pilz; Timothy D. Bigby; Gerry R. Boss
Some Pseudomonas aeruginosa strains are cyanogenic, and cyanide may contribute to the bacteriums virulence. Using human isolates of P. aeruginosa, we have shown that Drosophila melanogaster suspended above cyanogenic strains become motionless and develop bradycardia and that flies injected with cyanogenic bacterial strains die more rapidly than those injected with noncyanogenic strains. Flies exposed to cyanogenic strains had high cyanide and low adenosine triphosphate (ATP) concentrations in body extracts, and treatment with a cyanide antidote equalized survival of flies injected with cyanogenic and noncyanogenic strains. P. aeruginosa PAO1 strain with a mutation in the hydrogen cyanide synthase gene cluster was much less toxic to flies than the parental cyanogenic strain or 2 knock-in strains. Transgenic flies overexpressing rhodanese, which detoxifies cyanide by converting it to thiocyanate, were resistant to cyanide and the increased virulence of cyanogenic strains. We conclude that D. melanogaster is a good model for studying cyanide produced by P. aeruginosa.
Journal of Molecular Biology | 1980
Vijay S. Sharma; Gerald L. Newton; Helen M. Ranney; Farouq Ahmed; John W. Harris; Elizabeth H. Danish
Abstract In hemoglobin Rothschild arginine replaces the normal tryptophan at β37(C3), at α1β2 contact. Residue β37 is in close proximity to Argα92 (FG4). Substitution of Trp by Arg at β37 results in two positively charged Arg residues at FG4 and C3 facing each other, a situation that would destabilize the subunit constraints essential for the tetrameric integrity of the molecule and for the reduced ligand affinity of unliganded normal HB ‡ compared to isolated chains. Our studies show liganded HbR is extensively dissociated into dimers and has a high ligand affinity in phosphate buffer and a low ligand affinity in bis-Tris at alkaline pH. Kinetic studies indicate that in the T state HbR has a higher ligand affinity than HbA. This is explained by reduced subunit constraints in the T state and dissociation of the monoliganded species (Hb4L) into dimers. Kinetic studies also show that R state Hb Rothschild has lower ligand affinity than R state HbA. These results are explained on the basis of extensive dissociation of R state Hb Rothschild into dimers and lower ligand affinity of dimers as compared to triliganded tetramers (α2β2(O2)3). Kinetic data indicate that the lower ligand affinity of dimers (Hb Rothschild) as compared to that of triliganded tetramers (HbA) is due to the increased ligand dissociation rates in the case of oxyhemoglobin and reduced ligand combination in the case of carboxyderivatives. Both the CO combination reaction time-course around 425 nm and the O2 dissociation rates at 437.8 nm indicate the presence of large α,β-chain differences in Hb Rothschild.
Biochemical and Biophysical Research Communications | 1975
Vijay S. Sharma; H.M. Ranney; J. Geibel; T. G. Traylor
Abstract Microperoxidase binds CO faster and more strongly than does hemoglobin. We have used this observation to determine the overall CO-dissociation rate constants, l, of carboxyhemoglobin. The results of our studies indicate that the rate constant l is not very different from the statistically corrected l 4 , suggesting that, compared to HbO 2 , cooperativity in the dissociation rate constants of carboxyhemoglobin is greatly reduced.
Biochemical and Biophysical Research Communications | 1992
Soha D. Idriss; Renate B. Pilz; Vijay S. Sharma; Gerry R. Boss
We have purified the soluble form of guanylate cyclase from human placenta greater than 2400-fold. The enzyme shared several characteristics with the enzyme purified from other sources including molecular mass and subunit composition, activation by divalent cations, inhibition by ATP and Michaelis constants. The enzyme, however, had a lower absorption maximum in the Soret region (417 +/- 1 nm) than the enzyme from other sources and was activated only one-fifth as much by nitric oxide as the bovine lung enzyme. It appears that the heme prosthetic group in the human placental enzyme may be hexa-coordinate and in the bovine lung enzyme the heme group may be penta-coordinate.
Journal of Biological Chemistry | 2001
Jürgen Scheele; Eric Bruner; Tomasz Zemojtel; Pavel Martásek; Linda J. Roman; Bettie Sue Siler Masters; Vijay S. Sharma; Douglas Magde
Nitric-oxide synthases (NOS) catalyze the conversion of l-arginine to NO, which then stimulates many physiological processes. In the active form, each NOS is a dimer; each strand has both a heme-binding oxygenase domain and a reductase domain. In neuronal NOS (nNOS), there is a conserved cysteine motif (CX 4C) that participates in a ZnS4center, which stabilizes the dimer interface and/or the flavoprotein-heme domain interface. Previously, the Cys331→ Ala mutant was produced, and it proved to be inactive in catalysis and to have structural defects that disrupt the binding ofl-Arg and tetrahydrobiopterin (BH4). Because binding l-Arg and BH4 to wild type nNOS profoundly affects CO binding with little effect on NO binding, ligand binding to the mutant was characterized as follows. 1) The mutant initially has behavior different from native protein but reminiscent of isolated heme domain subchains. 2) Adding l-Arg and BH4 has little effect immediately but substantial effect after extended incubation. 3) Incubation for 12 h restores behavior similar but not quite identical to that of wild type nNOS. Such incubation was shown previously to restore most but not all catalytic activity. These kinetic studies substantiate the hypothesis that zinc content is related to a structural rather than a catalytic role in maintaining active nNOS.
Collaboration
Dive into the Vijay S. Sharma's collaboration.
University of Texas Health Science Center at San Antonio
View shared research outputs