Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vijaya Padma Viswanadha is active.

Publication


Featured researches published by Vijaya Padma Viswanadha.


Cellular Physiology and Biochemistry | 2015

17β-Estradiol and/or Estrogen Receptor β Attenuate the Autophagic and Apoptotic Effects Induced by Prolonged Hypoxia Through HIF-1α-Mediated BNIP3 and IGFBP-3 Signaling Blockage

Dennis Jine Yuan Hsieh; Wei Wen Kuo; Yi Ping Lai; Marthandam Asokan Shibu; Chia Yao Shen; Peiying Pai; Yu Lan Yeh; Jing Ying Lin; Vijaya Padma Viswanadha; Chih Yang Huang

Background/Aims: The risk of heart disease is higher in males than in females. However, this advantage of females declines with increasing age, presumably a consequence of decreased estrogen secretion and malfunctioning of the estrogen receptor. We previously demonstrated that 17β-estradiol (E2) prevents cardiomyocyte hypertrophy, autophagy and apoptosis via estrogen receptor α (ERα), but the effects of ERβ on myocardial injury remained elusive. The present paper thus, investigated the cardioprotective effects of estrogen (E2) and ERβ against hypoxia-induced cell death. Methods: Transient transfection of Tet-On ERβ gene construct was used to overexpress ERβ in hypoxia-treated H9c2 cardiomyoblast cells. Results: Our data revealed that IGF1R, Akt phosphorylation and Bcl-2 expression are enhanced by ERβ in H9c2 cells. Moreover, ERβ overexpression reduced accumulation of hypoxia-related proteins, autophagy-related proteins and mitochondria-apoptotic proteins and enhanced the protein levels of Bcl-2, pAkt and Bad under hypoxic condition. In neonatal rat ventricular myocytes (NRVMs), we observed that hypoxia induced cell apoptosis as measured by TUNEL staining, and E2 and/or ERβ could totally abolish hypoxia-induced apoptosis. The suppressive effects of E2 and/or ERβ in hypoxia-treated NRVMs were totally reversed by ER antagonist, ICI. Taken together, E2 and/or ERβ exert the protective effect through repressed hypoxia-inducible HIF-1α, BNIP3 and IGFBP-3 levels to restrain the hypoxia-induced autophagy and apoptosis effects in H9c2 cardiomyoblast cells. Conclusion: The results suggest that females probably could tolerate better prolonged hypoxia condition than males, and E2/ERβ treatment could be a potential therapy to prevent hypoxia-induced heart damage.”


Molecular Biology Reports | 2011

Protective effect of Spirulina against 4-nitroquinoline-1-oxide induced toxicity

Vijaya Padma Viswanadha; Siddharth Sivan; Roopesh Rajendra Shenoi

In the present study, we focused on the protective effect of Spirulina against 4-nitroquinoline-1-oxide (4NQO) induced hepato and nephrotoxicity in the experimental rats. The 4NQO administration resulted in increased levels of hepatic and renal markers [Alanine Transaminase (ALT), Aspartate Transaminase (AST), Lactate Dehydrogenase (LDH), urea, creatinine and uric acid] in the serum of experimental animals. It also increased the oxidative stress resulting in increased levels of the lipid peroxidation with a concomitant decline in the levels of non enzymic [reduced glutathione (GSH)] and enzymic antioxidants [(Superoxide dismutase (SOD), Catalase (CAT), Glutathione peroxidase (GPx), and Glutathione-S-transferase (GST)] in both liver and kidney. Oral pretreatment with aqueous extract of Spirulina prevented 4NQO induced changes in the levels of hepatic and kidney diagnostic marker enzymes in the serum of experimental rats. It counteracted the 4NQO induced lipid peroxidation and maintained the hepatic and kidney antioxidant defense system at near normal in both liver and kidney. The antioxidant responsiveness mediated by Spirulina may be anticipated to have biological significance in eliminating reactive free radicals that may otherwise affect normal cell functioning and provide a scientific rationale for the use of Spirulina.


Molecular and Cellular Biochemistry | 2015

ZAK induces cardiomyocyte hypertrophy and brain natriuretic peptide expression via p38/JNK signaling and GATA4/c-Jun transcriptional factor activation

You Liang Hsieh; Ying Lan Tsai; Marthandam Asokan Shibu; Chia chi Su; Li Chin Chung; Peiying Pai; Chia-Hua Kuo; Yu Lan Yeh; Vijaya Padma Viswanadha; Chih Yang Huang

Abstract Cardiomyocyte hypertrophy is an adaptive response of heart to various stress conditions. During the period of stress accumulation, transition from physiological hypertrophy to pathological hypertrophy results in the promotion of heart failure. Our previous studies found that ZAK, a sterile alpha motif and leucine zipper containing kinase, was highly expressed in infarcted human hearts and demonstrated that overexpression of ZAK induced cardiac hypertrophy. This study evaluates, cellular events associated with the expression of two doxycycline (Dox) inducible Tet-on ZAK expression systems, a Tet-on ZAK WT (wild-type), and a Tet-on ZAK DN (mutant, Dominant-negative form) in H9c2 myoblast cells; Tet-on ZAK WT was found to increase cell size and hypertrophic marker BNP in a dose-dependent manner. To ascertain the mechanism of ZAK-mediated hypertrophy, expression analysis with various inhibitors of the related upstream and downstream proteins was performed. Tet-on ZAK WT expression triggered the p38 and JNK pathway and also activated the expression and nuclear translocation of p-GATA4 and p-c-Jun transcription factors, without the involvement of p-ERK or NFATc3. However, Tet-on ZAK DN showed no effect on the p38 and JNK signaling cascade. The results showed that the inhibitors of JNK1/2 and p38 significantly suppressed ZAK-induced BNP expression. The results show the role of ZAK and/or the ZAK downstream events such as JNK and p38 phosphorylation, c-Jun, and GATA-4 nuclear translocation in cardiac hypertrophy. ZAK and/or the ZAK downstream p38, and JNK pathway could therefore be potential targets to ameliorate cardiac hypertrophy symptoms in ZAK-overexpressed patients.


British Journal of Nutrition | 2015

Supplementary heat-killed Lactobacillus reuteri GMNL-263 ameliorates hyperlipidaemic and cardiac apoptosis in high-fat diet-fed hamsters to maintain cardiovascular function

Wei Jen Ting; Wei Wen Kuo; Chia-Hua Kuo; Yu Lan Yeh; Chia Yao Shen; Ya Hui Chen; Tsung Jung Ho; Vijaya Padma Viswanadha; Yi Hsing Chen; Chih Yang Huang

Obesity and hyperlipidaemia increase the risk of CVD. Some strains of probiotics have been suggested to have potential applications in cardiovascular health by lowering serum LDL-cholesterol. In this work, high-fat diet-induced hyperlipidaemia in hamsters was treated with different doses (5×108 and 2·5×109 cells/kg per d) of heat-killed Lactobacillus reuteri GMNL-263 (Lr263) by oral gavage for 8 weeks. The serum lipid profile analysis showed that LDL-cholesterol and plasma malondialdehyde (P-MDA) were reduced in the GMNL-263 5×108 cells/kg per d treatment group. Total cholesterol and P-MDA were reduced in the GMNL-263 2·5×109 cells/kg per d treatment group. In terms of heart function, the GMNL-263 2·5×109 cells/kg per d treatments improved the ejection fraction from 85·71 to 91·81 % and fractional shortening from 46·93 to 57·92 % in the high-fat diet-fed hamster hearts. Moreover, the GMNL-263-treated, high-fat diet-fed hamster hearts exhibited reduced Fas-induced myocardial apoptosis and a reactivated IGF1R/PI3K/Akt cell survival pathway. Interestingly, the GMNL-263 treatments also enhanced the heat-shock protein 27 expression in a dose-dependent manner, but the mechanism for this increase remains unclear. In conclusion, supplementary heat-killed L. reuteri GMNL-263 can slightly reduce serum cholesterol. The anti-hyperlipidaemia effects of GMNL-263 may reactivate the IGF1R/PI3K/Akt cell survival pathway and reduce Fas-induced myocardial apoptosis in high-fat diet-fed hamster hearts.


Growth Factors Journal | 2016

Hypoxia suppresses myocardial survival pathway through HIF-1α-IGFBP-3-dependent signaling and enhances cardiomyocyte autophagic and apoptotic effects mainly via FoxO3a-induced BNIP3 expression.

Chih Chung Feng; Chien Chung Lin; Yi Ping Lai; Tung Sheng Chen; Shibu Marthandam Asokan; Jing Ying Lin; Kuan Ho Lin; Vijaya Padma Viswanadha; Wei Wen Kuo; Chih Yang Huang

Abstract The HIF-1α transcriptional factor and the BH-3 only protein BNIP3 are known to play fundamental roles in response to hypoxia. The objective of this research is to investigate the molecular mechanisms and the correlation of HIF-1α, BNIP3 and IGFBP-3 in hypoxia-induced cardiomyocytes injuries. Heart-derived H9c2 cells and neonatal rat ventricular myocytes (NRVMs) were incubated in normoxic or hypoxic conditions. Hypoxia increased HIF-1α expression and activated the downstream BNIP3 and IGFBP-3 thereby triggered mitochondria-dependent apoptosis. Moreover, IGF1R/PI3K/Akt signaling was attenuated by HIF-1α-dependent IGFBP-3 expression to enhance hypoxia-induced apoptosis. Autophagy suppression with 3-methyladenine or siATG5 or siBeclin-1 significantly decreased myocardial apoptosis under hypoxia. Knockdown of FoxO3a or BNIP3 significantly abrogated hypoxia-induced autophagy and mitochondria-dependent apoptosis. Moreover, prolonged-hypoxia induced HIF-1α stimulated BNIP3 and enhanced IGFBP-3 activation to inhibit IGF1R/PI3K/Akt survival pathway and mediate mitochondria-dependent cardiomyocyte apoptosis. HIF-1α and FoxO3a blockage are sufficient to annul the change of excessive hypoxia of hearts.


Environmental Toxicology | 2016

Deep sea minerals prolong life span of streptozotocin-induced diabetic rats by compensatory augmentation of the IGF-I-survival signaling and inhibition of apoptosis.

Hung En Liao; Marthandam Asokan Shibu; Wei Wen Kuo; Peiying Pai; Tsung Jung Ho; Chia-Hua Kuo; Jing Ying Lin; Su Ying Wen; Vijaya Padma Viswanadha; Chih Yang Huang

Consumption of deep sea minerals (DSM), such as magnesium, calcium, and potassium, is known to reduce hypercholesterolemia‐induced myocardial hypertrophy and cardiac‐apoptosis and provide protection against cardiovascular diseases. Heart diseases develop as a lethal complication among diabetic patients usually due to hyperglycemia‐induced cardiac‐apoptosis that causes severe cardiac‐damages, heart failure, and reduced life expectancy. In this study, we investigated the potential of DSM and its related cardio‐protection to increase the life expectancy in diabetic rats. In this study, a heart failure rat model was developed by using streptozotocin (65 mg kg−1) IP injection. Different doses of DSM‐1× (37 mg kg−1 day−1), 2× (74 mg kg−1 day−1) and 3× (111 mg kg−1 day−1), were administered to the rats through gavages for 4 weeks. The positive effects of DSM on the survival rate of diabetes rats were determined with respect to the corresponding effects of MgSO4. Further, to understand the mechanism by which DSM enhances the survival of diabetic rats, their potential to regulate cardiac‐apoptosis and control cardiac‐dysfunction were examined. Echocardiogram, tissue staining, TUNEL assay, and Western blotting assay were used to investigate modulations in the myocardial contractile function and related signaling protein expression. The results showed that DSM regulate apoptosis and complement the cardiomyocyte proliferation by enhancing survival mechanisms. Moreover DSM significantly reduced the mortality rate and enhanced the survival rate of diabetic rats. Experimental results show that DSM administration can be an effective strategy to improve the life expectancy of diabetic subjects by improving cardiac‐cell proliferation and by controlling cardiac‐apoptosis and associated cardiac‐dysfunction.


Growth Factors Journal | 2015

Long-term hypoxia exposure enhanced IGFBP-3 protein synthesis and secretion resulting in cell apoptosis in H9c2 myocardial cells.

Ruey Lin Chang; Jing Wei Lin; Dennis Jine Yuan Hsieh; Yu Lan Yeh; Chia Yao Shen; Cecilia Hsuan Day; Tsung Jung Ho; Vijaya Padma Viswanadha; Wei Wen Kuo; Chih Yang Huang

Abstract Myocardial infarction (MI) usually results in myocardial ischemia, remodeling and hypoxia that lead to cell death. To date, the insulin-like growth factor binding protein-3 (IGFBP3) is known to play an important role in insulin growth factor (IGF) bioavailability. Previous studies have found that hypoxia results in cell apoptosis. However, the detailed mechanism and roles of IGFBP3 in long-term hypoxia (LTH) regulated heart cell apoptosis remains unknown. In this study H9c2 cardiomyoblast cells were treated with investigated long-term hypoxic exposure with the possible mechanisms involved. The results showed that LTH enhanced IGFBP3 protein synthesis and induced its secretion. The accumulated IGFBP3 sequestered Insulin growth factor 1 (IGF-1) away from the type I IGF receptor (IGF-1 R), which blocked the IGF1R/PI3K/Akt survival signaling pathway, resulting in cell apoptosis. According to our findings, IGFBP3 could be a valuable target for developing treatments for cardiac diseases in long-term hypoxia exposure patients.


Environmental Toxicology | 2017

Protective effect of Co-enzyme Q10 On doxorubicin-induced cardiomyopathy of rat hearts.

Pei Yu Chen; Chien-Wen Hou; Marthandam Asokan Shibu; Cecilia Hsuan Day; Peiying Pai; Zhao Rong Liu; Tze Yi Lin; Vijaya Padma Viswanadha; Chia-Hua Kuo; Chih Yang Huang

Q10 is a powerful antioxidant often used in medical nutritional supplements for cancer treatment. This study determined whether Q10 could effectively prevent cardio‐toxicity caused by doxorubicin treatment. Four week old SD rats were segregated into groups namely control, doxorubicin group (challenged with doxorubicin), Dox + Q10 group (with doxorubicin challenge and oral Q10 treatment), and Q10 group (with oral Q10 treatment). Doxorubicin groups received IP doxorubicin (2.5 mg/kg) every 3 days and Q10 groups received Q10 (10 mg/kg) every day. Three weeks of doxorubicin challenge caused significant reduction in heart weight, disarray in cardiomyocyte arrangement, elevation of collagen accumulation, enhancement of fibrosis and cell death associated proteins, and inhibition of survival proteins. However, Q10 effectively protected cardiomyocytes and ameliorated fibrosis and cell death induced by doxorubicin. Q10 is, therefore, evidently a potential drug to prevent heart damage caused by doxorubicin.


Journal of Nutritional Biochemistry | 2016

Purple rice anthocyanin extract protects cardiac function in STZ-induced diabetes rat hearts by inhibiting cardiac hypertrophy and fibrosis

Yu Feng Chen; Marthandam Asokan Shibu; Ming Jen Fan; Ming Cheng Chen; Vijaya Padma Viswanadha; Yi Lin Lin; Chao Hung Lai; Kuan Ho Lin; Tsung Jung Ho; Wei Wen Kuo; Chih Yang Huang

Diabetes mellitus (DM) often causes chronic inflammation, hypertrophy, apoptosis and fibrosis in the heart and subsequently leads to myocardial remodeling, deteriorated cardiac function and heart failure. Anthocyanins are strong antioxidants that show effective cardioprotective properties. Our aim was to determine whether anthocyanin extracted from purple rice provides protective effects in DM hearts. Five-week-old male Wistar rats were administered with streptozotocin (STZ) to induce type 1 diabetes. Animals were randomly divided into normal group, DM group (induced by 55mg/kg STZ, i.p.) and DM with anthocyanin group (250mg/kg/day, feeding 4 weeks). After treatment, the left ventricular tissues were collected to observe the relevant changes in the heart and the associated molecular events were determined by Western blotting assay. STZ-induced DM increased the proinflammatory signaling proteins in the heart and triggered the development of cardiac hypertrophy and fibrosis. Significant reduction in the heart function index such as left ventricular end-diastolic dimension and left ventricular end-systolic dimension was observed in the STZ-induced DM rat hearts, suggesting myocardial tissue damage and loss of heart function. Treatment with anthocyanin from purple rice extract, however, reduced the effect of DM and showed significant reduction in cardiac hypertrophy and fibrosis. Anthocyanin therefore restores the deteriorating cardiac functions in DM rats as evident from their heart functional parameters.


Journal of Ethnopharmacology | 2016

Andrographis paniculata extract attenuates pathological cardiac hypertrophy and apoptosis in high-fat diet fed mice.

You Liang Hsieh; Marthandam Asokan Shibu; Chong-Kuei Lii; Vijaya Padma Viswanadha; Yi Lin Lin; Chao Hung Lai; Yu Feng Chen; Kuan Ho Lin; Wei Wen Kuo; Chih Yang Huang

ETHNOPHARMACOLOGICAL RELEVANCE Andrographis paniculata (Burm. f.) Nees (Acanthaceae) has a considerable medicinal reputation in most parts of Asia as a potent medicine in the treatment of Endocrine disorders, inflammation and hypertension. AIM OF THE STUDY Water extract of A. paniculata and its active constituent andrographolide are known to possess anti-inflammatory and anti-apoptotic effects. Our aim is to identify whether A. paniculata extract could protect myocardial damage in high-fat diet induced obese mice. MATERIALS AND METHODS The test mice were divided into three groups fed either with normal chow or with high fat diet (obese) or with high fat diet treated with A. paniculata extract (2g/kg/day, through gavage, for a week). RESULTS We found that the myocardial inflammation pathway related proteins were increased in the obese mouse which potentially contributes to cardiac hypertrophy and myocardial apoptosis. But feeding with A. paniculata extract showed significant inhibition on the effects of high fat diet. CONCLUSION Our study strongly suggests that supplementation of A. paniculata extract can be used for prevention and treatment of cardiovascular disease in obese patients.

Collaboration


Dive into the Vijaya Padma Viswanadha's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ray Jade Chen

Taipei Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hsi Hsien Hsu

Mackay Memorial Hospital

View shared research outputs
Top Co-Authors

Avatar

Su Ying Wen

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Li Chin Chung

Chia Nan University of Pharmacy and Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaw Ji Yang

Chung Shan Medical University

View shared research outputs
Top Co-Authors

Avatar

Chien Chung Lin

National Chung Hsing University

View shared research outputs
Researchain Logo
Decentralizing Knowledge