Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vincent Bulone is active.

Publication


Featured researches published by Vincent Bulone.


Nature | 2009

Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans

Brian J. Haas; Sophien Kamoun; Michael C. Zody; Rays H. Y. Jiang; Robert E. Handsaker; Liliana M. Cano; Manfred Grabherr; Chinnappa D. Kodira; Sylvain Raffaele; Trudy Torto-Alalibo; Tolga O. Bozkurt; Audrey M. V. Ah-Fong; Lucia Alvarado; Vicky L. Anderson; Miles R. Armstrong; Anna O. Avrova; Laura Baxter; Jim Beynon; Petra C. Boevink; Stephanie R. Bollmann; Jorunn I. B. Bos; Vincent Bulone; Guohong Cai; Cahid Cakir; James C. Carrington; Megan Chawner; Lucio Conti; Stefano Costanzo; Richard Ewan; Noah Fahlgren

Phytophthora infestans is the most destructive pathogen of potato and a model organism for the oomycetes, a distinct lineage of fungus-like eukaryotes that are related to organisms such as brown algae and diatoms. As the agent of the Irish potato famine in the mid-nineteenth century, P. infestans has had a tremendous effect on human history, resulting in famine and population displacement. To this day, it affects world agriculture by causing the most destructive disease of potato, the fourth largest food crop and a critical alternative to the major cereal crops for feeding the world’s population. Current annual worldwide potato crop losses due to late blight are conservatively estimated at


Developmental Cell | 2011

Callose Biosynthesis Regulates Symplastic Trafficking during Root Development

Anne Vatén; Jan Dettmer; Shuang Wu; York-Dieter Stierhof; Shunsuke Miyashima; Shri Ram Yadav; Christina Roberts; Ana Campilho; Vincent Bulone; Raffael Lichtenberger; Satu J. Lehesranta; Ari Pekka Mähönen; Jae-Yean Kim; Eija Jokitalo; Norbert Sauer; Ben Scheres; Keiji Nakajima; Annelie Carlsbecker; Kimberly L. Gallagher; Ykä Helariutta

6.7 billion. Management of this devastating pathogen is challenged by its remarkable speed of adaptation to control strategies such as genetically resistant cultivars. Here we report the sequence of the P. infestans genome, which at ∼240 megabases (Mb) is by far the largest and most complex genome sequenced so far in the chromalveolates. Its expansion results from a proliferation of repetitive DNA accounting for ∼74% of the genome. Comparison with two other Phytophthora genomes showed rapid turnover and extensive expansion of specific families of secreted disease effector proteins, including many genes that are induced during infection or are predicted to have activities that alter host physiology. These fast-evolving effector genes are localized to highly dynamic and expanded regions of the P. infestans genome. This probably plays a crucial part in the rapid adaptability of the pathogen to host plants and underpins its evolutionary potential.


Journal of Integrative Plant Biology | 2010

What Do We Really Know about Cellulose Biosynthesis in Higher Plants

Gea Guerriero; Johanna Fugelstad; Vincent Bulone

Plant cells are connected through plasmodesmata (PD), membrane-lined channels that allow symplastic movement of molecules between cells. However, little is known about the role of PD-mediated signaling during plant morphogenesis. Here, we describe an Arabidopsis gene, CALS3/GSL12. Gain-of-function mutations in CALS3 result in increased accumulation of callose (β-1,3-glucan) at the PD, a decrease in PD aperture, defects in root development, and reduced intercellular trafficking. Enhancement of CALS3 expression during phloem development suppressed loss-of-function mutations in the phloem abundant callose synthase, CALS7 indicating that CALS3 is a bona fide callose synthase. CALS3 alleles allowed us to spatially and temporally control the PD aperture between plant tissues. Using this tool, we are able to show that movement of the transcription factor SHORT-ROOT and microRNA165 between the stele and the endodermis is PD dependent. Taken together, we conclude that regulated callose biosynthesis at PD is essential for cell signaling.


Journal of Biological Chemistry | 2002

In vitro versus in vivo cellulose microfibrils from plant primary wall synthases: structural differences.

Joséphine Lai-Kee-Him; Henri Chanzy; Martin Müller; Jean-Luc Putaux; Tomoya Imai; Vincent Bulone

Cellulose biosynthesis is one of the most important biochemical processes in plant biology. Despite the considerable progress made during the last decade, numerous fundamental questions related to this key process in plant development are outstanding. Numerous models have been proposed through the years to explain the detailed molecular events of cellulose biosynthesis. Almost all models integrate solid experimental data with hypotheses on several of the steps involved in the process. Speculative models are most useful to stimulate further research investigations and bring new exciting ideas to the field. However, it is important to keep their hypothetical nature in mind and be aware of the risk that some undemonstrated hypotheses may progressively become admitted. In this review, we discuss the different steps required for cellulose formation and crystallization, and highlight the most important specific aspects that are supported by solid experimental data.


Nature Genetics | 2015

The pineapple genome and the evolution of CAM photosynthesis

Ray Ming; Robert VanBuren; Ching Man Wai; Haibao Tang; Michael C. Schatz; John E. Bowers; Eric Lyons; Ming Li Wang; Jung Chen; Eric Biggers; Jisen Zhang; Lixian Huang; Lingmao Zhang; Wenjing Miao; Jian Zhang; Zhangyao Ye; Chenyong Miao; Zhicong Lin; Hao Wang; Hongye Zhou; Won Cheol Yim; Henry D. Priest; Chunfang Zheng; Margaret R. Woodhouse; Patrick P. Edger; Romain Guyot; Hao Bo Guo; Hong Guo; Guangyong Zheng; Ratnesh Singh

Detergent extracts of microsomal fractions from suspension cultured cells of Rubus fruticosus (blackberry) were tested for their ability to synthesize in vitrosizable quantities of cellulose from UDP-glucose. Both Brij 58 and taurocholate were effective and yielded a substantial percentage of cellulose microfibrils together with (1→3)-β-d-glucan (callose). The taurocholate extracts, which did not require the addition of Mg2+, were the most efficient, yielding roughly 20% of cellulose. This cellulose was characterized after callose removal by methylation analysis, electron microscopy, and electron and x-ray synchrotron diffractions; its resistance toward the acid Updegraff reagent was also evaluated. The cellulose microfibrils synthesized in vitro had the same diameter as the endogenous microfibrils isolated from primary cell walls. Both polymers diffracted as cellulose IVI, a disorganized form of cellulose I. Besides these similarities, the in vitromicrofibrils had a higher perfection and crystallinity as well as a better resistance toward the Updegraff reagent. These differences can be attributed to the mode of synthesis of the in vitromicrofibrils that are able to grow independently in a neighbor-free environment, as opposed to the cellulose in the parent cell walls where new microfibrils have to interweave with the already laid polymers, with the result of a number of structural defects.


The Plant Cell | 2008

Cellulose synthesis in Phytophthora infestans is required for normal appressorium formation and successful infection of potato

Laura J. Grenville-Briggs; Victoria L. Anderson; Johanna Fugelstad; Anna O. Avrova; Jamel Bouzenzana; A. Williams; Stephan Wawra; Stephen C. Whisson; Paul R. J. Birch; Vincent Bulone; Pieter van West

Pineapple (Ananas comosus (L.) Merr.) is the most economically valuable crop possessing crassulacean acid metabolism (CAM), a photosynthetic carbon assimilation pathway with high water-use efficiency, and the second most important tropical fruit. We sequenced the genomes of pineapple varieties F153 and MD2 and a wild pineapple relative, Ananas bracteatus accession CB5. The pineapple genome has one fewer ancient whole-genome duplication event than sequenced grass genomes and a conserved karyotype with seven chromosomes from before the ρ duplication event. The pineapple lineage has transitioned from C3 photosynthesis to CAM, with CAM-related genes exhibiting a diel expression pattern in photosynthetic tissues. CAM pathway genes were enriched with cis-regulatory elements associated with the regulation of circadian clock genes, providing the first cis-regulatory link between CAM and circadian clock regulation. Pineapple CAM photosynthesis evolved by the reconfiguration of pathways in C3 plants, through the regulatory neofunctionalization of preexisting genes and not through the acquisition of neofunctionalized genes via whole-genome or tandem gene duplication.


PLOS Genetics | 2013

Distinctive expansion of potential virulence genes in the genome of the oomycete fish pathogen Saprolegnia parasitica.

Rays H. Y. Jiang; Irene de Bruijn; Brian J. Haas; Rodrigo Belmonte; Lars Löbach; James S. Christie; Guido Van den Ackerveken; Arnaud Bottin; Vincent Bulone; Sara M. Díaz-Moreno; Bernard Dumas; Lin Fan; Elodie Gaulin; Francine Govers; Laura J. Grenville-Briggs; Neil R. Horner; Joshua Z. Levin; Marco Mammella; Harold J. G. Meijer; Paul F. Morris; Chad Nusbaum; Stan Oome; Andrew J. Phillips; David van Rooyen; Elzbieta Rzeszutek; Marcia Saraiva; Christopher J. Secombes; Michael F. Seidl; Berend Snel; Joost H. M. Stassen

Cellulose, the important structural compound of cell walls, provides strength and rigidity to cells of numerous organisms. Here, we functionally characterize four cellulose synthase genes (CesA) in the oomycete plant pathogen Phytophthora infestans, the causal agent of potato (Solanum tuberosum) late blight. Three members of this new protein family contain Pleckstrin homology domains and form a distinct phylogenetic group most closely related to the cellulose synthases of cyanobacteria. Expression of all four genes is coordinately upregulated during pre- and early infection stages of potato. Inhibition of cellulose synthesis by 2,6-dichlorobenzonitrile leads to a dramatic reduction in the number of normal germ tubes with appressoria, severe disruption of the cell wall in the preinfection structures, and a complete loss of pathogenicity. Silencing of the entire gene family in P. infestans with RNA interference leads to a similar disruption of the cell wall surrounding appressoria and an inability to form typical functional appressoria. In addition, the cellulose content of the cell walls of the silenced lines is >50% lower than in the walls of the nonsilenced lines. Our data demonstrate that the isolated genes are involved in cellulose biosynthesis and that cellulose synthesis is essential for infection by P. infestans.


Proceedings of the National Academy of Sciences of the United States of America | 2013

BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis

Okako Omadjela; Adishesh K. Narahari; Joanna Strumillo; Hugo Mélida; Olga Mazur; Vincent Bulone; Jochen Zimmer

Oomycetes in the class Saprolegniomycetidae of the Eukaryotic kingdom Stramenopila have evolved as severe pathogens of amphibians, crustaceans, fish and insects, resulting in major losses in aquaculture and damage to aquatic ecosystems. We have sequenced the 63 Mb genome of the fresh water fish pathogen, Saprolegnia parasitica. Approximately 1/3 of the assembled genome exhibits loss of heterozygosity, indicating an efficient mechanism for revealing new variation. Comparison of S. parasitica with plant pathogenic oomycetes suggests that during evolution the host cellular environment has driven distinct patterns of gene expansion and loss in the genomes of plant and animal pathogens. S. parasitica possesses one of the largest repertoires of proteases (270) among eukaryotes that are deployed in waves at different points during infection as determined from RNA-Seq data. In contrast, despite being capable of living saprotrophically, parasitism has led to loss of inorganic nitrogen and sulfur assimilation pathways, strikingly similar to losses in obligate plant pathogenic oomycetes and fungi. The large gene families that are hallmarks of plant pathogenic oomycetes such as Phytophthora appear to be lacking in S. parasitica, including those encoding RXLR effectors, Crinklers, and Necrosis Inducing-Like Proteins (NLP). S. parasitica also has a very large kinome of 543 kinases, 10% of which is induced upon infection. Moreover, S. parasitica encodes several genes typical of animals or animal-pathogens and lacking from other oomycetes, including disintegrins and galactose-binding lectins, whose expression and evolutionary origins implicate horizontal gene transfer in the evolution of animal pathogenesis in S. parasitica.


Trends in Plant Science | 2009

An update on the nomenclature for the cellulose synthase genes in Populus

Manoj Kumar; Shivegowda Thammannagowda; Vincent Bulone; Vincent L. Chiang; Kyung Hwan Han; Chandrashekhar P. Joshi; Shawn D. Mansfield; Ewa J. Mellerowicz; Björn Sundberg; Tuula T. Teeri; Brian E. Ellis

Significance Cellulose is the most abundant biopolymer on Earth, primarily formed by vascular plants, but also by some bacteria. Bacterial extracellular polysaccharides, such as cellulose and alginate, are an important component of biofilms, which are multicellular, usually sessile, aggregates of bacteria. Biofilms exhibit a greater resistance to antimicrobial treatments compared with isolated bacteria and thus are a particular concern to human health. Cellulose synthases synthesize cellulose by polymerizing UDP-activated glucose and transport the growing polymer across the cell membrane during its synthesis. Despite numerous attempts, reconstituting cellulose synthesis in vitro from purified components has been unsuccessful. Here we present the complete reconstitution of bacterial cellulose synthesis from components from Rhodobacter sphaeroides, thereby establishing an experimental basis for cellulose and biofilm research. Cellulose is a linear extracellular polysaccharide. It is synthesized by membrane-embedded glycosyltransferases that processively polymerize UDP-activated glucose. Polymer synthesis is coupled to membrane translocation through a channel formed by the cellulose synthase. Although eukaryotic cellulose synthases function in macromolecular complexes containing several different enzyme isoforms, prokaryotic synthases associate with additional subunits to bridge the periplasm and the outer membrane. In bacteria, cellulose synthesis and translocation is catalyzed by the inner membrane-associated bacterial cellulose synthase (Bcs)A and BcsB subunits. Similar to alginate and poly-β-1,6 N-acetylglucosamine, bacterial cellulose is implicated in the formation of sessile bacterial communities, termed biofilms, and its synthesis is likewise stimulated by cyclic-di-GMP. Biochemical studies of exopolysaccharide synthesis are hampered by difficulties in purifying and reconstituting functional enzymes. We demonstrate robust in vitro cellulose synthesis reconstituted from purified BcsA and BcsB proteins from Rhodobacter sphaeroides. Although BcsA is the catalytically active subunit, the membrane-anchored BcsB subunit is essential for catalysis. The purified BcsA-B complex produces cellulose chains of a degree of polymerization in the range 200–300. Catalytic activity critically depends on the presence of the allosteric activator cyclic-di-GMP, but is independent of lipid-linked reactants. Our data reveal feedback inhibition of cellulose synthase by UDP but not by the accumulating cellulose polymer and highlight the strict substrate specificity of cellulose synthase for UDP-glucose. A truncation analysis of BcsB localizes the region required for activity of BcsA within its C-terminal membrane-associated domain. The reconstituted reaction provides a foundation for the synthesis of biofilm exopolysaccharides, as well as its activation by cyclic-di-GMP.


Journal of Biological Chemistry | 2002

Mutated Barley (1,3)-beta-D-Glucan Endohydrolases Synthesize Crystalline (1,3)-beta-D-Glucans

Maria Hrmova; Tomoya Imai; Simon J. Rutten; Jon K. Fairweather; Ludovic Pelosi; Vincent Bulone; Hugues Driguez; Geoffrey B. Fincher

Cellulose synthase (CesA) is a central catalyst in the generation of the plant cell wall biomass and is, therefore, the focus of intense research. Characterization of individual CesA genes from Populus species has led to the publication of several different naming conventions for CesA gene family members in this model tree. To help reduce the resulting confusion, we propose here a new phylogeny-based CesA nomenclature that aligns the Populus CesA gene family with the established Arabidopsis thaliana CesA family structure.

Collaboration


Dive into the Vincent Bulone's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Tracy Nixon

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Manish Kumar

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sung Hyun Cho

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Cassandra Maranas

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Chao Fang

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Lauren S. McKee

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Vaibhav Srivastava

Royal Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge