Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vincent Leveque is active.

Publication


Featured researches published by Vincent Leveque.


Journal of Biological Chemistry | 2006

The Novel Nucleoside Analog R1479 (4′-Azidocytidine) Is a Potent Inhibitor of NS5B-dependent RNA Synthesis and Hepatitis C Virus Replication in Cell Culture

Klaus Klumpp; Vincent Leveque; Sophie Le Pogam; Han Ma; Wen-Rong Jiang; Hyunsoon Kang; Caroline Granycome; Margaret Singer; Carl Laxton; Julie Qi Hang; Keshab Sarma; David Bernard Smith; Dieter Heindl; Christopher John Hobbs; John Herbert Merrett; Julian A. Symons; Nick Cammack; Joseph Armstrong Martin; René Devos; Isabel Najera

Hepatitis C virus (HCV) polymerase activity is essential for HCV replication. Targeted screening of nucleoside analogs identified R1479 (4′-azidocytidine) as a specific inhibitor of HCV replication in the HCV subgenomic replicon system (IC50 = 1.28 μm) with similar potency compared with 2′-C-methylcytidine (IC50 = 1.13 μm). R1479 showed no effect on cell viability or proliferation of HCV replicon or Huh-7 cells at concentrations up to 2 mm. HCV replicon RNA could be fully cleared from replicon cells after prolonged incubation with R1479. The corresponding 5′-triphosphate derivative (R1479-TP) is a potent inhibitor of native HCV replicase isolated from replicon cells and of recombinant HCV polymerase (NS5B)-mediated RNA synthesis activity. R1479-TP inhibited RNA synthesis as a CTP-competitive inhibitor with a Ki of 40 nm. On an HCV RNA-derived template substrate (complementary internal ribosome entry site), R1479-TP showed similar potency of NS5B inhibition compared with 3′-dCTP. R1479-TP was incorporated into nascent RNA by HCV polymerase and reduced further elongation with similar efficiency compared with 3′-dCTP under the reaction conditions. The S282T point mutation in the coding sequence of NS5B confers resistance to inhibition by 2′-C-MeATP and other 2′-methyl-nucleotides. In contrast, the S282T mutation did not confer cross-resistance to R1479.


Antimicrobial Agents and Chemotherapy | 2008

Selected Replicon Variants with Low-Level In Vitro Resistance to the Hepatitis C Virus NS5B Polymerase Inhibitor PSI-6130 Lack Cross-Resistance with R1479

Samir Ali; Vincent Leveque; Sophie Le Pogam; Han Ma; Friederike Philipp; Nicole Inocencio; Mark A. Smith; Andre Alker; Hyunsoon Kang; Isabel Najera; Klaus Klumpp; Julian A. Symons; Nick Cammack; Wen-Rong Jiang

ABSTRACT PSI-6130 (β-d-2′-deoxy-2′-fluoro-2′-C-methylcytidine) is a selective inhibitor of hepatitis C virus (HCV) replication that targets the NS5B polymerase. R7128, the prodrug of PSI-6130, has shown antiviral efficacy in patients chronically infected with HCV genotype 1a (GT-1a) and GT-1b. We observed that the compound exhibited potent in vitro activity against laboratory-optimized HCV replicons as well as against a panel of replicons containing NS5B HCV polymerases derived from GT-1a and GT-1b clinical isolates. We used the HCV replicon cell system to examine the emergence of variants with reduced sensitivity to PSI-6130. Short-term treatment of cells harboring the HCV subgenomic replicon with PSI-6130 cleared the replicon without generating resistant variants. Long-term culture of the cells under the compound selection generated the S282T substitution in a complex pattern with other amino acid substitutions in the NS5B polymerase. The presence of the coselected substitutions did not increase the moderate three- to sixfold loss of sensitivity to PSI-6130 mediated by the S282T substitution; however, their presence enhanced the replication capacity compared to the replication levels seen with the S282T substitution alone. We also observed a lack of cross-resistance between PSI-6130 and R1479 and demonstrated that long-term culture selection with PSI-6130 in replicon cells harboring preexisting mutations resistant to R1479 (S96T/N142T) results in the emergence of the S282T substitution and the reversion of S96T to wild-type serine. In conclusion, PSI-6130 presents a high barrier to resistance selection in vitro, selects for variants exhibiting only low-level resistance, and lacks cross-resistance with R1479, supporting the continued development of the prodrug R7128 as a therapeutic agent for the treatment of HCV infection.


Journal of Biological Chemistry | 2007

Characterization of the Metabolic Activation of Hepatitis C Virus Nucleoside Inhibitor β-d-2′-Deoxy-2′-fluoro-2′-C-methylcytidine (PSI-6130) and Identification of a Novel Active 5′-Triphosphate Species

Han Ma; Wen-Rong Jiang; Nicole Robledo; Vincent Leveque; Samir Ali; Teresa Lara-Jaime; Mohammad R. Masjedizadeh; David W. Smith; Nick Cammack; Klaus Klumpp; Julian A. Symons

β-d-2′-Deoxy-2′-fluoro-2′-C-methylcytidine (PSI-6130) is a potent inhibitor of hepatitis C virus (HCV) replication in the subgenomic HCV replicon system, and its corresponding 5′-triphosphate is a potent inhibitor of the HCV RNA polymerase in vitro. In this study the formation of PSI-6130-triphosphate was characterized in primary human hepatocytes. PSI-6130 and its 5′-phosphorylated derivatives were identified, and the intracellular concentrations were determined. In addition, the deaminated derivative of PSI-6130, β-d-2′-deoxy-2′-fluoro-2′-C-methyluridine (RO2433, PSI-6026) and its corresponding phosphorylated metabolites were identified in human hepatocytes after incubation with PSI-6130. The formation of the 5′-triphosphate (TP) of PSI-6130 (PSI-6130-TP) and RO2433 (RO2433-TP) increased with time and reached steady state levels at 48 h. The formation of both PSI-6130-TP and RO2433-TP demonstrated a linear relationship with the extracellular concentrations of PSI-6130 up to 100 μm, suggesting a high capacity of human hepatocytes to generate the two triphosphates. The mean half-lives of PSI-6130-TP and RO2433-TP were 4.7 and 38 h, respectively. RO2433-TP also inhibited RNA synthesis by the native HCV replicase isolated from HCV replicon cells and the recombinant HCV polymerase NS5B with potencies comparable with those of PSI-6130-TP. Incorporation of RO2433-5′-monophosphate (MP) into nascent RNA by NS5B led to chain termination similar to that of PSI-6130-MP. These results demonstrate that PSI-6130 is metabolized to two pharmacologically active species in primary human hepatocytes.


Journal of Biological Chemistry | 2008

2′-Deoxy-4′-azido Nucleoside Analogs Are Highly Potent Inhibitors of Hepatitis C Virus Replication Despite the Lack of 2′-α-Hydroxyl Groups

Klaus Klumpp; Genadiy Kalayanov; Han Ma; Sophie Le Pogam; Vincent Leveque; Wen-Rong Jiang; Nicole Inocencio; Anniek De Witte; Sonal Rajyaguru; Ezra Tai; Sushmita Chanda; Michael R. Irwin; Christian Sund; Anna Winqist; T. V. Maltseva; Staffan Eriksson; Elena Usova; Mark A. Smith; Andre Alker; Isabel Najera; Nick Cammack; Joseph Armstrong Martin; Nils Gunnar Johansson; David W. Smith

RNA polymerases effectively discriminate against deoxyribonucleotides and specifically recognize ribonucleotide substrates most likely through direct hydrogen bonding interaction with the 2′-α-hydroxy moieties of ribonucleosides. Therefore, ribonucleoside analogs as inhibitors of viral RNA polymerases have mostly been designed to retain hydrogen bonding potential at this site for optimal inhibitory potency. Here, two novel nucleoside triphosphate analogs are described, which are efficiently incorporated into nascent RNA by the RNA-dependent RNA polymerase NS5B of hepatitis C virus (HCV), causing chain termination, despite the lack of α-hydroxy moieties. 2′-Deoxy-2′-β-fluoro-4′-azidocytidine (RO-0622) and 2′-deoxy-2′-β-hydroxy-4′-azidocytidine (RO-9187) were excellent substrates for deoxycytidine kinase and were phosphorylated with efficiencies up to 3-fold higher than deoxycytidine. As compared with previous reports on ribonucleosides, higher levels of triphosphate were formed from RO-9187 in primary human hepatocytes, and both compounds were potent inhibitors of HCV virus replication in the replicon system (IC50 = 171 ± 12 nm and 24 ± 3 nm for RO-9187 and RO-0622, respectively; CC50 >1 mm for both). Both compounds inhibited RNA synthesis by HCV polymerases from either HCV genotypes 1a and 1b or containing S96T or S282T point mutations with similar potencies, suggesting no cross-resistance with either R1479 (4′-azidocytidine) or 2′-C-methyl nucleosides. Pharmacokinetic studies with RO-9187 in rats and dogs showed that plasma concentrations exceeding HCV replicon IC50 values 8-150-fold could be achieved by low dose (10 mg/kg) oral administration. Therefore, 2′-α-deoxy-4′-azido nucleosides are a new class of antiviral nucleosides with promising preclinical properties as potential medicines for the treatment of HCV infection.


Journal of Biological Chemistry | 2009

Slow binding inhibition and mechanism of resistance of non-nucleoside polymerase inhibitors of hepatitis C virus.

Julie Qi Hang; Yanli Yang; Seth F. Harris; Vincent Leveque; Hannah J. Whittington; Sonal Rajyaguru; Gloria Ao-Ieong; Matthew F. McCown; April Wong; Anthony M. Giannetti; Sophie Le Pogam; Francisco Xavier Talamas; Nick Cammack; Isabel Najera; Klaus Klumpp

The binding affinity of four palm and thumb site representative non-nucleoside inhibitors (NNIs) of HCV polymerase NS5B to wild-type and resistant NS5B polymerase proteins was determined, and the influence of RNA binding on NNI binding affinity was investigated. NNIs with high binding affinity potently inhibited HCV RNA polymerase activity and replicon replication. Among the compounds tested, HCV-796 showed slow binding kinetics to NS5B. The binding affinity of HCV-796 to NS5B increased 27-fold over a 3-h incubation period with an equilibrium Kd of 71 ± 2 nm. Slow binding kinetics of HCV-796 was driven by slow dissociation from NS5B with a koff of 4.9 ± 0.5 × 10−4 s−1. NS5B bound a long, 378-nucleotide HCV RNA oligonucleotide with high affinity (Kd = 6.9 ± 0.3 nm), whereas the binding affinity was significantly lower for a short, 21-nucleotide RNA (Kd = 155.1 ± 16.2 nm). The formation of the NS5B-HCV RNA complex did not affect the slow binding kinetics profile and only slightly reduced NS5B binding affinity of HCV-796. The magnitude of reduction of NNI binding affinity for the NS5B proteins with various resistance mutations in the palm and thumb binding sites correlated well with resistance -fold shifts in NS5B polymerase activity and replicon assays. Co-crystal structures of NS5B-Con1 and NS5B-BK with HCV-796 revealed a deep hydrophobic binding pocket at the palm region of NS5B. HCV-796 interaction with the induced binding pocket on NS5B is consistent with slow binding kinetics and loss of binding affinity with mutations at amino acid position 316.


Journal of Biological Chemistry | 2007

2'-deoxy-4'-azido nucleoside analogs are highly potent inhibitors of HCV replication despite the lack of 2'-alpha hydroxyl groups

Klaus Klumpp; Genadiy Kalayanov; Han Ma; Sophie Le Pogam; Vincent Leveque; Wen-Rong Jiang; Nicole Inocencio; Anniek De Witte; Sonal Rajyaguru; Ezra Tai; Sushmita Chanda; Michael R. Irwin; Christian Sund; Anna Winqist; T. V. Maltseva; Staffan Eriksson; Elena Usova; Mark A. Smith; Andre Alker; Isabel Najera; Nick Cammack; Joseph Armstrong Martin; Nils Gunnar Johansson; David W. Smith

RNA polymerases effectively discriminate against deoxyribonucleotides and specifically recognize ribonucleotide substrates most likely through direct hydrogen bonding interaction with the 2′-α-hydroxy moieties of ribonucleosides. Therefore, ribonucleoside analogs as inhibitors of viral RNA polymerases have mostly been designed to retain hydrogen bonding potential at this site for optimal inhibitory potency. Here, two novel nucleoside triphosphate analogs are described, which are efficiently incorporated into nascent RNA by the RNA-dependent RNA polymerase NS5B of hepatitis C virus (HCV), causing chain termination, despite the lack of α-hydroxy moieties. 2′-Deoxy-2′-β-fluoro-4′-azidocytidine (RO-0622) and 2′-deoxy-2′-β-hydroxy-4′-azidocytidine (RO-9187) were excellent substrates for deoxycytidine kinase and were phosphorylated with efficiencies up to 3-fold higher than deoxycytidine. As compared with previous reports on ribonucleosides, higher levels of triphosphate were formed from RO-9187 in primary human hepatocytes, and both compounds were potent inhibitors of HCV virus replication in the replicon system (IC50 = 171 ± 12 nm and 24 ± 3 nm for RO-9187 and RO-0622, respectively; CC50 >1 mm for both). Both compounds inhibited RNA synthesis by HCV polymerases from either HCV genotypes 1a and 1b or containing S96T or S282T point mutations with similar potencies, suggesting no cross-resistance with either R1479 (4′-azidocytidine) or 2′-C-methyl nucleosides. Pharmacokinetic studies with RO-9187 in rats and dogs showed that plasma concentrations exceeding HCV replicon IC50 values 8-150-fold could be achieved by low dose (10 mg/kg) oral administration. Therefore, 2′-α-deoxy-4′-azido nucleosides are a new class of antiviral nucleosides with promising preclinical properties as potential medicines for the treatment of HCV infection.


Journal of Biological Chemistry | 2004

Potent anti-tumor effects of an active site mutant of human manganese-superoxide dismutase evolutionary conservation of product inhibition

Christopher A. Davis; Amy S. Hearn; Bradley Fletcher; Justin S. Bickford; Jorge Garcia; Vincent Leveque; J. Andres Melendez; David N. Silverman; James Zucali; Anupam Agarwal; Harry S. Nick

Mn-SOD serves as the primary cellular defense against oxidative damage by converting superoxide radicals (\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{O}_{{\dot{2}}}^{-}\) \end{document}) to O2 and H2O2. A unique characteristic of this mitochondrial anti-oxidant enzyme is the conservation from bacteria to man of a rapidly formed product inhibited state. Using site-directed mutagenesis, we have generated an active site mutant (H30N) of human Mn-SOD, which exhibits significantly reduced product inhibition and increased enzymatic efficiency. Overexpression of the H30N enzyme causes anti-proliferative effects in vitro and anti-tumor effects in vivo. Our results provide a teleological basis for the phylogenetically invariant nature of position His-30 and the evolutionary conservation of product inhibition. These data also provide more direct intracellular evidence for the signaling role associated with H2O2.


Journal of Biological Chemistry | 1999

Interrupting the Hydrogen Bond Network at the Active Site of Human Manganese Superoxide Dismutase

Cecilia A. Ramilo; Vincent Leveque; Yue Guan; James R. Lepock; John A. Tainer; Harry S. Nick; David N. Silverman

Histidine 30 in human manganese superoxide dismutase (MnSOD) is located at a site partially exposed to solvent with its side chain participating in a hydrogen-bonded network that includes the active-site residues Tyr166 and Tyr34 and extends to the manganese-bound solvent molecule. We have replaced His30 with a series of amino acids and Tyr166 with Phe in human MnSOD. The crystal structure of the mutant of MnSOD containing Asn30 superimposed closely with the wild type, but the side chain of Asn30 did not participate in the hydrogen-bonded network in the active site. The catalytic activity of a number of mutants with replacements at position 30 and for the mutant containing Phe166 showed a 10–40-fold decrease in k cat. This is the same magnitude of decrease in k cat obtained with the replacement of Tyr34 by Phe, suggesting that interrupting the hydrogen-bonded active-site network at any of the sites of these three participants (His30, Tyr34, and Tyr166) leads to an equivalent decrease in k cat and probably less efficient proton transfer to product peroxide. The specific geometry of His30 on the hydrogen bond network is essential for stability since the disparate mutations H30S, H30A, and H30Q reduceTm by similar amounts (10–16 °C) compared with wild type.


Journal of Medicinal Chemistry | 2014

Discovery of N-[4-[6-tert-Butyl-5-methoxy-8-(6-methoxy-2-oxo-1H-pyridin-3-yl)-3-quinolyl]phenyl]methanesulfonamide (RG7109), a Potent Inhibitor of the Hepatitis C Virus NS5B Polymerase

Francisco Xavier Talamas; Sarah C. Abbot; Shalini Anand; Ken A. Brameld; David S. Carter; Jun Chen; Dana E. Davis; Javier de Vicente; Amy Fung; Leyi Gong; Seth F. Harris; Petra Inbar; Sharada Shenvi Labadie; Eun Kyoung Lee; Remy Lemoine; Sophie Le Pogam; Vincent Leveque; Jim Li; Joel McIntosh; Isabel Najera; Jaehyeon Park; Aruna Railkar; Sonal Rajyaguru; Michael Sangi; Ryan Craig Schoenfeld; Leanna R. Staben; Yun-Chou Tan; Joshua Paul Gergely Taygerly; Armando G. Villaseñor; Paul Weller

In the past few years, there have been many advances in the efforts to cure patients with hepatitis C virus (HCV). The ultimate goal of these efforts is to develop a combination therapy consisting of only direct-antiviral agents (DAAs). In this paper, we discuss our efforts that led to the identification of a bicyclic template with potent activity against the NS5B polymerase, a critical enzyme on the life cycle of HCV. In continuation of our exploration to improve the stilbene series, the 3,5,6,8-tetrasubstituted quinoline core was identified as replacement of the stilbene moiety. 6-Methoxy-2(1H)-pyridone was identified among several heterocyclic headgroups to have the best potency. Solubility of the template was improved by replacing a planar aryl linker with a saturated pyrrolidine. Profiling of the most promising compounds led to the identification of quinoline 41 (RG7109), which was selected for advancement to clinical development.


Journal of Medicinal Chemistry | 2007

Application of the phosphoramidate proTide approach to 4‘-Azidouridine confers sub-micromolar potency versus hepatitis C virus on an inactive nucleoside

Plinio Perrone; G Luoni; Mary Rose Kelleher; Felice Daverio; A Angell; Sinead Mulready; Costantino Congiatu; Sonal Rajyaguru; Joseph Armstrong Martin; Vincent Leveque; Sophie Le Pogam; Isabel Najera; Klaus Klumpp; and David B. Smith; Christopher McGuigan

Collaboration


Dive into the Vincent Leveque's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David W. Smith

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge