Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wen-Rong Jiang is active.

Publication


Featured researches published by Wen-Rong Jiang.


Journal of Biological Chemistry | 2006

The Novel Nucleoside Analog R1479 (4′-Azidocytidine) Is a Potent Inhibitor of NS5B-dependent RNA Synthesis and Hepatitis C Virus Replication in Cell Culture

Klaus Klumpp; Vincent Leveque; Sophie Le Pogam; Han Ma; Wen-Rong Jiang; Hyunsoon Kang; Caroline Granycome; Margaret Singer; Carl Laxton; Julie Qi Hang; Keshab Sarma; David Bernard Smith; Dieter Heindl; Christopher John Hobbs; John Herbert Merrett; Julian A. Symons; Nick Cammack; Joseph Armstrong Martin; René Devos; Isabel Najera

Hepatitis C virus (HCV) polymerase activity is essential for HCV replication. Targeted screening of nucleoside analogs identified R1479 (4′-azidocytidine) as a specific inhibitor of HCV replication in the HCV subgenomic replicon system (IC50 = 1.28 μm) with similar potency compared with 2′-C-methylcytidine (IC50 = 1.13 μm). R1479 showed no effect on cell viability or proliferation of HCV replicon or Huh-7 cells at concentrations up to 2 mm. HCV replicon RNA could be fully cleared from replicon cells after prolonged incubation with R1479. The corresponding 5′-triphosphate derivative (R1479-TP) is a potent inhibitor of native HCV replicase isolated from replicon cells and of recombinant HCV polymerase (NS5B)-mediated RNA synthesis activity. R1479-TP inhibited RNA synthesis as a CTP-competitive inhibitor with a Ki of 40 nm. On an HCV RNA-derived template substrate (complementary internal ribosome entry site), R1479-TP showed similar potency of NS5B inhibition compared with 3′-dCTP. R1479-TP was incorporated into nascent RNA by HCV polymerase and reduced further elongation with similar efficiency compared with 3′-dCTP under the reaction conditions. The S282T point mutation in the coding sequence of NS5B confers resistance to inhibition by 2′-C-MeATP and other 2′-methyl-nucleotides. In contrast, the S282T mutation did not confer cross-resistance to R1479.


Antimicrobial Agents and Chemotherapy | 2008

The Hepatitis C Virus Replicon Presents a Higher Barrier to Resistance to Nucleoside Analogs than to Nonnucleoside Polymerase or Protease Inhibitors

Matthew F. McCown; Sonal Rajyaguru; Sophie Le Pogam; Samir Ali; Wen-Rong Jiang; Hyunsoon Kang; Julian A. Symons; Nick Cammack; Isabel Najera

ABSTRACT Specific inhibitors of hepatitis C virus (HCV) replication that target the NS3/4A protease (e.g., VX-950) or the NS5B polymerase (e.g., R1479/R1626, PSI-6130/R7128, NM107/NM283, and HCV-796) have advanced into clinical development. Treatment of patients with VX-950 or HCV-796 rapidly selected for drug-resistant variants after a 14-day monotherapy treatment period. However, no viral resistance was identified after monotherapy with R1626 (prodrug of R1479) or NM283 (prodrug of NM107) after 14 days of monotherapy. Based upon the rapid selection of resistance to the protease and nonnucleoside inhibitors during clinical trials and the lack of selection of resistance to the nucleoside inhibitors, we used the replicon system to determine whether nucleoside inhibitors demonstrate a higher genetic barrier to resistance than protease and nonnucleoside inhibitors. Treatment of replicon cells with nucleoside inhibitors at 10 and 15 times the 50% effective concentration resulted in clearance of the replicon, while treatment with a nonnucleoside or protease inhibitor selected resistant colonies. In combination, the presence of a nucleoside inhibitor reduced the frequency of colonies resistant to the other classes of inhibitors. These results indicate that the HCV replicon presents a higher barrier to the selection of resistance to nucleoside inhibitors than to nonnucleoside or protease inhibitors. Furthermore, the combination of a nonnucleoside or protease inhibitor with a nucleoside polymerase inhibitor could have a clear clinical benefit through the delay of resistance emergence.


Journal of Virology | 2006

Selection and Characterization of Replicon Variants Dually Resistant to Thumb- and Palm-Binding Nonnucleoside Polymerase Inhibitors of the Hepatitis C Virus

Sophie Le Pogam; Hyunsoon Kang; Seth F. Harris; Vincent Leveque; Anthony M. Giannetti; Samir Ali; Wen-Rong Jiang; Sonal Rajyaguru; Gisele Tavares; Connie Oshiro; Than Hendricks; Klaus Klumpp; Julian A. Symons; Michelle F. Browner; Nick Cammack; Isabel Najera

ABSTRACT Multiple nonnucleoside inhibitor binding sites have been identified within the hepatitis C virus (HCV) polymerase, including in the palm and thumb domains. After a single treatment with a thumb site inhibitor (thiophene-2-carboxylic acid NNI-1), resistant HCV replicon variants emerged that contained mutations at residues Leu419, Met423, and Ile482 in the polymerase thumb domain. Binding studies using wild-type (WT) and mutant enzymes and structure-based modeling showed that the mechanism of resistance is through the reduced binding of the inhibitor to the mutant enzymes. Combined treatment with a thumb- and a palm-binding polymerase inhibitor had a dramatic impact on the number of replicon colonies able to replicate in the presence of both inhibitors. A more exact characterization through molecular cloning showed that 97.7% of replicons contained amino acid substitutions that conferred resistance to either of the inhibitors. Of those, 65% contained simultaneously multiple amino acid substitutions that conferred resistance to both inhibitors. Double-mutant replicons Met414Leu and Met423Thr were predominantly selected, which showed reduced replication capacity compared to the WT replicon. These findings demonstrate the selection of replicon variants dually resistant to two NS5B polymerase inhibitors binding to different sites of the enzyme. Additionally, these findings provide initial insights into the in vitro mutational threshold of the HCV NS5B polymerase and the potential impact of viral fitness on the selection of multiple-resistant mutants.


Antimicrobial Agents and Chemotherapy | 2008

Selected Replicon Variants with Low-Level In Vitro Resistance to the Hepatitis C Virus NS5B Polymerase Inhibitor PSI-6130 Lack Cross-Resistance with R1479

Samir Ali; Vincent Leveque; Sophie Le Pogam; Han Ma; Friederike Philipp; Nicole Inocencio; Mark A. Smith; Andre Alker; Hyunsoon Kang; Isabel Najera; Klaus Klumpp; Julian A. Symons; Nick Cammack; Wen-Rong Jiang

ABSTRACT PSI-6130 (β-d-2′-deoxy-2′-fluoro-2′-C-methylcytidine) is a selective inhibitor of hepatitis C virus (HCV) replication that targets the NS5B polymerase. R7128, the prodrug of PSI-6130, has shown antiviral efficacy in patients chronically infected with HCV genotype 1a (GT-1a) and GT-1b. We observed that the compound exhibited potent in vitro activity against laboratory-optimized HCV replicons as well as against a panel of replicons containing NS5B HCV polymerases derived from GT-1a and GT-1b clinical isolates. We used the HCV replicon cell system to examine the emergence of variants with reduced sensitivity to PSI-6130. Short-term treatment of cells harboring the HCV subgenomic replicon with PSI-6130 cleared the replicon without generating resistant variants. Long-term culture of the cells under the compound selection generated the S282T substitution in a complex pattern with other amino acid substitutions in the NS5B polymerase. The presence of the coselected substitutions did not increase the moderate three- to sixfold loss of sensitivity to PSI-6130 mediated by the S282T substitution; however, their presence enhanced the replication capacity compared to the replication levels seen with the S282T substitution alone. We also observed a lack of cross-resistance between PSI-6130 and R1479 and demonstrated that long-term culture selection with PSI-6130 in replicon cells harboring preexisting mutations resistant to R1479 (S96T/N142T) results in the emergence of the S282T substitution and the reversion of S96T to wild-type serine. In conclusion, PSI-6130 presents a high barrier to resistance selection in vitro, selects for variants exhibiting only low-level resistance, and lacks cross-resistance with R1479, supporting the continued development of the prodrug R7128 as a therapeutic agent for the treatment of HCV infection.


Journal of Biological Chemistry | 2007

Characterization of the Metabolic Activation of Hepatitis C Virus Nucleoside Inhibitor β-d-2′-Deoxy-2′-fluoro-2′-C-methylcytidine (PSI-6130) and Identification of a Novel Active 5′-Triphosphate Species

Han Ma; Wen-Rong Jiang; Nicole Robledo; Vincent Leveque; Samir Ali; Teresa Lara-Jaime; Mohammad R. Masjedizadeh; David W. Smith; Nick Cammack; Klaus Klumpp; Julian A. Symons

β-d-2′-Deoxy-2′-fluoro-2′-C-methylcytidine (PSI-6130) is a potent inhibitor of hepatitis C virus (HCV) replication in the subgenomic HCV replicon system, and its corresponding 5′-triphosphate is a potent inhibitor of the HCV RNA polymerase in vitro. In this study the formation of PSI-6130-triphosphate was characterized in primary human hepatocytes. PSI-6130 and its 5′-phosphorylated derivatives were identified, and the intracellular concentrations were determined. In addition, the deaminated derivative of PSI-6130, β-d-2′-deoxy-2′-fluoro-2′-C-methyluridine (RO2433, PSI-6026) and its corresponding phosphorylated metabolites were identified in human hepatocytes after incubation with PSI-6130. The formation of the 5′-triphosphate (TP) of PSI-6130 (PSI-6130-TP) and RO2433 (RO2433-TP) increased with time and reached steady state levels at 48 h. The formation of both PSI-6130-TP and RO2433-TP demonstrated a linear relationship with the extracellular concentrations of PSI-6130 up to 100 μm, suggesting a high capacity of human hepatocytes to generate the two triphosphates. The mean half-lives of PSI-6130-TP and RO2433-TP were 4.7 and 38 h, respectively. RO2433-TP also inhibited RNA synthesis by the native HCV replicase isolated from HCV replicon cells and the recombinant HCV polymerase NS5B with potencies comparable with those of PSI-6130-TP. Incorporation of RO2433-5′-monophosphate (MP) into nascent RNA by NS5B led to chain termination similar to that of PSI-6130-MP. These results demonstrate that PSI-6130 is metabolized to two pharmacologically active species in primary human hepatocytes.


Journal of Biological Chemistry | 2008

2′-Deoxy-4′-azido Nucleoside Analogs Are Highly Potent Inhibitors of Hepatitis C Virus Replication Despite the Lack of 2′-α-Hydroxyl Groups

Klaus Klumpp; Genadiy Kalayanov; Han Ma; Sophie Le Pogam; Vincent Leveque; Wen-Rong Jiang; Nicole Inocencio; Anniek De Witte; Sonal Rajyaguru; Ezra Tai; Sushmita Chanda; Michael R. Irwin; Christian Sund; Anna Winqist; T. V. Maltseva; Staffan Eriksson; Elena Usova; Mark A. Smith; Andre Alker; Isabel Najera; Nick Cammack; Joseph Armstrong Martin; Nils Gunnar Johansson; David W. Smith

RNA polymerases effectively discriminate against deoxyribonucleotides and specifically recognize ribonucleotide substrates most likely through direct hydrogen bonding interaction with the 2′-α-hydroxy moieties of ribonucleosides. Therefore, ribonucleoside analogs as inhibitors of viral RNA polymerases have mostly been designed to retain hydrogen bonding potential at this site for optimal inhibitory potency. Here, two novel nucleoside triphosphate analogs are described, which are efficiently incorporated into nascent RNA by the RNA-dependent RNA polymerase NS5B of hepatitis C virus (HCV), causing chain termination, despite the lack of α-hydroxy moieties. 2′-Deoxy-2′-β-fluoro-4′-azidocytidine (RO-0622) and 2′-deoxy-2′-β-hydroxy-4′-azidocytidine (RO-9187) were excellent substrates for deoxycytidine kinase and were phosphorylated with efficiencies up to 3-fold higher than deoxycytidine. As compared with previous reports on ribonucleosides, higher levels of triphosphate were formed from RO-9187 in primary human hepatocytes, and both compounds were potent inhibitors of HCV virus replication in the replicon system (IC50 = 171 ± 12 nm and 24 ± 3 nm for RO-9187 and RO-0622, respectively; CC50 >1 mm for both). Both compounds inhibited RNA synthesis by HCV polymerases from either HCV genotypes 1a and 1b or containing S96T or S282T point mutations with similar potencies, suggesting no cross-resistance with either R1479 (4′-azidocytidine) or 2′-C-methyl nucleosides. Pharmacokinetic studies with RO-9187 in rats and dogs showed that plasma concentrations exceeding HCV replicon IC50 values 8-150-fold could be achieved by low dose (10 mg/kg) oral administration. Therefore, 2′-α-deoxy-4′-azido nucleosides are a new class of antiviral nucleosides with promising preclinical properties as potential medicines for the treatment of HCV infection.


Journal of Biological Chemistry | 2007

2'-deoxy-4'-azido nucleoside analogs are highly potent inhibitors of HCV replication despite the lack of 2'-alpha hydroxyl groups

Klaus Klumpp; Genadiy Kalayanov; Han Ma; Sophie Le Pogam; Vincent Leveque; Wen-Rong Jiang; Nicole Inocencio; Anniek De Witte; Sonal Rajyaguru; Ezra Tai; Sushmita Chanda; Michael R. Irwin; Christian Sund; Anna Winqist; T. V. Maltseva; Staffan Eriksson; Elena Usova; Mark A. Smith; Andre Alker; Isabel Najera; Nick Cammack; Joseph Armstrong Martin; Nils Gunnar Johansson; David W. Smith

RNA polymerases effectively discriminate against deoxyribonucleotides and specifically recognize ribonucleotide substrates most likely through direct hydrogen bonding interaction with the 2′-α-hydroxy moieties of ribonucleosides. Therefore, ribonucleoside analogs as inhibitors of viral RNA polymerases have mostly been designed to retain hydrogen bonding potential at this site for optimal inhibitory potency. Here, two novel nucleoside triphosphate analogs are described, which are efficiently incorporated into nascent RNA by the RNA-dependent RNA polymerase NS5B of hepatitis C virus (HCV), causing chain termination, despite the lack of α-hydroxy moieties. 2′-Deoxy-2′-β-fluoro-4′-azidocytidine (RO-0622) and 2′-deoxy-2′-β-hydroxy-4′-azidocytidine (RO-9187) were excellent substrates for deoxycytidine kinase and were phosphorylated with efficiencies up to 3-fold higher than deoxycytidine. As compared with previous reports on ribonucleosides, higher levels of triphosphate were formed from RO-9187 in primary human hepatocytes, and both compounds were potent inhibitors of HCV virus replication in the replicon system (IC50 = 171 ± 12 nm and 24 ± 3 nm for RO-9187 and RO-0622, respectively; CC50 >1 mm for both). Both compounds inhibited RNA synthesis by HCV polymerases from either HCV genotypes 1a and 1b or containing S96T or S282T point mutations with similar potencies, suggesting no cross-resistance with either R1479 (4′-azidocytidine) or 2′-C-methyl nucleosides. Pharmacokinetic studies with RO-9187 in rats and dogs showed that plasma concentrations exceeding HCV replicon IC50 values 8-150-fold could be achieved by low dose (10 mg/kg) oral administration. Therefore, 2′-α-deoxy-4′-azido nucleosides are a new class of antiviral nucleosides with promising preclinical properties as potential medicines for the treatment of HCV infection.


Archive | 2001

Nucleoside derivatives for the treatment of hepatitis c

René Devos; Brian William Dymock; Christopher John Hobbs; Wen-Rong Jiang; Joseph Armstrong Martin; John Herbert Merrett; Isabel Najera; Nobuo Shimma; Takuo Tsukuda


Virology | 2006

In vitro selected Con1 subgenomic replicons resistant to 2'-C-Methyl-Cytidine or to R1479 show lack of cross resistance

Sophie Le Pogam; Wen-Rong Jiang; Vincent Leveque; Sonal Rajyaguru; Han Ma; Hyunsoon Kang; Sharon Jiang; Margaret Singer; Samir Ali; Klaus Klumpp; Dave Smith; Julian Symons; Nick Cammack; Isabel Najera


Archive | 2002

Anti-HCV nucleoside derivatives

René Devos; Christopher John Hobbs; Wen-Rong Jiang; Joseph Armstrong Martin; John Herbert Merrett; Isabel Najera

Collaboration


Dive into the Wen-Rong Jiang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge