Vincent R. Racaniello
Columbia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vincent R. Racaniello.
Cell | 1989
Cathy Mendelsohn; Eckard Wimmer; Vincent R. Racaniello
Restriction of poliovirus replication to a few sites in the infected primate host appears to be controlled by the expression of viral receptors. To learn more about these binding sites and their role in viral tissue tropism, cDNA clones encoding functional poliovirus receptors were isolated. The predicted amino acid sequence reveals that the human poliovirus receptor is an integral membrane protein with the conserved amino acids and domain structure characteristic of members of the immunoglobulin superfamily. Northern hybridization analysis indicates that poliovirus receptor transcripts are expressed in a wide range of human tissues, in contrast to the limited expression of virus binding sites, which suggests that additional factors or modifications of the receptor protein are required to permit poliovirus attachment.
Nature | 2014
John W. Schoggins; Donna A. MacDuff; Naoko Imanaka; Maria D. Gainey; Bimmi Shrestha; Jennifer L. Eitson; Katrina B. Mar; R. Blake Richardson; Alexander V. Ratushny; Vladimir Litvak; Rea Dabelic; Balaji Manicassamy; John D. Aitchison; Alan Aderem; Richard M. Elliott; Adolfo García-Sastre; Vincent R. Racaniello; Eric J. Snijder; Wayne M. Yokoyama; Michael S. Diamond; Herbert W. Virgin; Charles M. Rice
The type I interferon (IFN) response protects cells from viral infection by inducing hundreds of interferon-stimulated genes (ISGs), some of which encode direct antiviral effectors. Recent screening studies have begun to catalogue ISGs with antiviral activity against several RNA and DNA viruses. However, antiviral ISG specificity across multiple distinct classes of viruses remains largely unexplored. Here we used an ectopic expression assay to screen a library of more than 350 human ISGs for effects on 14 viruses representing 7 families and 11 genera. We show that 47 genes inhibit one or more viruses, and 25 genes enhance virus infectivity. Comparative analysis reveals that the screened ISGs target positive-sense single-stranded RNA viruses more effectively than negative-sense single-stranded RNA viruses. Gene clustering highlights the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS, also known as MB21D1) as a gene whose expression also broadly inhibits several RNA viruses. In vitro, lentiviral delivery of enzymatically active cGAS triggers a STING-dependent, IRF3-mediated antiviral program that functions independently of canonical IFN/STAT1 signalling. In vivo, genetic ablation of murine cGAS reveals its requirement in the antiviral response to two DNA viruses, and an unappreciated contribution to the innate control of an RNA virus. These studies uncover new paradigms for the preferential specificity of IFN-mediated antiviral pathways spanning several virus families.
Cell | 1990
Ruibao Ren; Frank Costantini; Edward J. Gorgacz; James J. Lee; Vincent R. Racaniello
A human poliovirus receptor (PVR) gene was used to generate transgenic mice that express PVR transcripts and poliovirus binding sites in a wide range of tissues. Intracerebral inoculation of PVR transgenic mice with poliovirus type 1, Mahoney strain, resulted in viral replication in the brain and spinal cord and development of paralytic poliomyelitis. P1/Mahoney did not replicate or cause paralysis in nontransgenic mice. PVR transgenic mice failed to develop clinical disease when inoculated intracerebrally with the live attenuated Sabin type 1 vaccine strain. These results demonstrate that the PVR is the major determinant of poliovirus host range in mice. Transgenic mice expressing human PVR should be useful for studying poliovirus neurovirulence, attenuation, and tissue tropism, and for development and testing of poliovirus vaccine strains.
Journal of Molecular Biology | 1981
Ihor R. Lemischka; Stephen R. Farmer; Vincent R. Racaniello; Phillip A. Sharp
Abstract Bacterial clones containing complementary DNA sequences specific for rat brain α-tubulin messenger RNA were constructed. One plasmid, pILαTl, contains >95% of the sequences found in the mRNA: the entire coding sequence as well as extensive 5′ and 3′ untranslated sequences. Comparison of the rat amino acid sequence with the known chicken α-tubulin sequence (Valenzuela et al. , 1981) reveals the extraordinary evolutionary stability of α-tubulin protein. The presence of only two interspecies amino acid differences within analogous 411 amino acid sequences predicts that amino acid substitutions in this protein are fixed with a unit evolutionary period (Wilson et al. , 1977) of 550 million years (i.e. the time required for a 1% difference to arise within a specific protein in two diverging evolutionary lineages). An analysis of the silent nucleotide differences, permissible because of the degeneracy of the genetic code, demonstrates that these might not occur in a random fashion. The high guanine-cytosine bias in silent codon positions within the chicken α-tubulin sequence, previously noted by Valenzuela et al. (1981), is not conserved within the rat sequence. This decrease in guanine-cytosine bias is accompanied by a selective loss of CpG dinucleotides in the rat sequence.
Molecular and Cellular Biology | 2000
Michael J. Bouchard; Yangzhang Dong; Brian M. McDermott; Du Hung Lam; Kristy Brown; Michael L. Shelanski; Anthony R. Bellvé; Vincent R. Racaniello
ABSTRACT Nectin-2 is a cell adhesion molecule encoded by a member of the poliovirus receptor gene family. This family consists of human, monkey, rat, and murine genes that are members of the immunoglobulin gene superfamily. Nectin-2 is a component of cell-cell adherens junctions and interacts with l-afadin, an F-actin-binding protein. Disruption of both alleles of the murine nectin-2 gene resulted in morphologically aberrant spermatozoa with defects in nuclear and cytoskeletal morphology and mitochondrial localization. Homozygous null males are sterile, while homozygous null females, as well as heterozygous males and females, are fertile. The production by nectin-2−/−mice of normal numbers of spermatozoa containing wild-type levels of DNA suggests that Nectin-2 functions at a late stage of germ cell development. Consistent with such a role, Nectin-2 is expressed in the testes only during the later stages of spermatogenesis. The structural defects observed in spermatozoa ofnectin-2 −/− mice suggest a role for this protein in organization and reorganization of the cytoskeleton during spermiogenesis.
Journal of Virology | 2007
Paola M. Barral; Juliet Morrison; Jennifer Drahos; Pankaj Gupta; Devanand Sarkar; Paul B. Fisher; Vincent R. Racaniello
ABSTRACT Infections with RNA viruses are sensed by the innate immune system through membrane-bound Toll-like receptors or the cytoplasmic RNA helicases RIG-I and MDA-5. It is believed that MDA-5 is crucial for sensing infections by picornaviruses, but there have been no studies on the role of this protein during infection with poliovirus, the prototypic picornavirus. Beginning at 4 h postinfection, MDA-5 protein is degraded in poliovirus-infected cells. Levels of MDA-5 declined beginning at 6 h after infection with rhinovirus type 1a or encephalomyocarditis virus, but the protein was stable in cells infected with rhinovirus type 16 or echovirus type 1. Cleavage of MDA-5 is not carried out by either poliovirus proteinase 2Apro or 3Cpro. Instead, degradation of MDA-5 in poliovirus-infected cells occurs in a proteasome- and caspase-dependent manner. Degradation of MDA-5 during poliovirus infection correlates with cleavage of poly(ADP) ribose polymerase (PARP), a hallmark of apoptosis. Induction of apoptosis by puromycin leads to cleavage of both PARP and MDA-5. The MDA-5 cleavage product observed in cells treated with puromycin is ∼90 kDa, similar in size to the putative cleavage product observed in poliovirus-infected cells. Poliovirus-induced cleavage of MDA-5 may be a mechanism to antagonize production of type I interferon in response to viral infection.
Pharmacology & Therapeutics | 2009
Paola M. Barral; Devanand Sarkar; Zao Zhong Su; Glen N. Barber; Rob DeSalle; Vincent R. Racaniello; Paul B. Fisher
The innate immune system responds within minutes of infection to produce type I interferons and pro-inflammatory cytokines. Interferons induce the synthesis of cell proteins with antiviral activity, and also shape the adaptive immune response by priming T cells. Despite the discovery of interferons over 50 years ago, only recently have we begun to understand how cells sense the presence of a virus infection. Two families of pattern recognition receptors have been shown to distinguish unique molecules present in pathogens, such as bacterial and fungal cell wall components, viral RNA and DNA, and lipoproteins. The first family includes the membrane-bound toll-like receptors (TLRs). Studies of the signaling pathways that lead from pattern recognition to cytokine induction have revealed extensive and overlapping cascades that involve protein-protein interactions and phosphorylation, and culminate in activation of transcription proteins that control the transcription of genes encoding interferons and other cytokines. A second family of pattern recognition receptors has recently been identified, which comprises the cytoplasmic sensors of viral nucleic acids, including MDA-5, RIG-I, and LGP2. In this review we summarize the discovery of these cytoplasmic sensors, how they recognize nucleic acids, the signaling pathways leading to cytokine synthesis, and viral countermeasures that have evolved to antagonize the functions of these proteins. We also consider the function of these cytoplasmic sensors in apoptosis, development and differentiation, and diabetes.
The EMBO Journal | 1994
E M Colston; Vincent R. Racaniello
Poliovirus initiates infection by binding to its cell receptor and undergoing a receptor‐mediated conformational alteration. To identify capsid residues that control these interactions, we have isolated and characterized poliovirus mutants that are resistant to neutralization by a soluble form of the poliovirus receptor. Twenty one soluble receptor‐resistant (srr) mutants were identified which still use the poliovirus receptor to infect cells. All but one srr mutant contain a single amino acid change at one of 13 different positions, either on the surface or in the interior of the virion. The results of binding and alteration assays demonstrate that both surface and internal capsid residues regulate attachment to the receptor and conformational change of the virus. Mutations that reduce alteration also affect receptor binding, suggesting a common structural basis for early events in poliovirus infection.
Journal of Virology | 2009
Jennifer Drahos; Vincent R. Racaniello
ABSTRACT Rhinoviruses are prevalent human pathogens that are associated with life-threatening acute asthma exacerbations. The innate immune response to rhinovirus infection, which may play an important role in virus-induced asthma induction, has not been comprehensively investigated. We examined the innate immune response in cells infected with human rhinovirus 1a (HRV1a). Beta interferon (IFN-β) mRNA was induced in HRV1a-infected cells at levels significantly lower than in cells infected with Sendai virus. To understand the basis for this observation, we determined whether components of the pathway leading to IFN-β induction were altered during infection. Dimerization of the transcription factor IRF-3, which is required for synthesis of IFN-β mRNA, is not observed in cells infected with HRV1a. Beginning at 7 h postinfection, IPS-1, a protein that is essential for cytosolic sensing of viral RNA, is degraded in HRV1a-infected cells. Induction of apoptosis by puromycin led to the cleavage of IPS-1, but treatment of HRV1a-infected cells with the pan-caspase inhibitor, zVAD, did not block cleavage of IPS-1. IPS-1 is cleaved in vitro by caspase-3 and by the picornaviral proteinases 2Apro and 3Cpro. Expression of HRV1a and polioviral 2Apro and 3Cpro led to degradation of IPS-1 in cells. These results suggest that IPS-1 is cleaved during HRV1a infection by three different proteases. Cleavage of IPS-1 may be a mechanism for evasion of the type I IFN response, leading to a more robust infection.
Journal of Virology | 2001
Simon K. Tsang; Brian M. McDermott; Vincent R. Racaniello; James M. Hogle
ABSTRACT We examined the role of soluble poliovirus receptor on the transition of native poliovirus (160S or N particle) to an infectious intermediate (135S or A particle). The viral receptor behaves as a classic transition state theory catalyst, facilitating the N-to-A conversion by lowering the activation energy for the process by 50 kcal/mol. In contrast to earlier studies which demonstrated that capsid-binding drugs inhibit thermally mediated N-to-A conversion through entropic stabilization alone, capsid-binding drugs are shown to inhibit receptor-mediated N-to-A conversion through a combination of enthalpic and entropic effects.