Vincent T. Woods
Pacific Northwest National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vincent T. Woods.
Journal of Radioanalytical and Nuclear Chemistry | 2016
Khris B. Olsen; Randy R. Kirkham; Vincent T. Woods; Derek A. Haas; James C. Hayes; Ted W. Bowyer; Donaldo P. Mendoza; Justin D. Lowrey; Craig D. Lukins; Reynold Suarez; Paul H. Humble; Mark D. Ellefson; Mike D. Ripplinger; L. Zhong; Alexandre V. Mitroshkov; Amanda M. Prinke; Emily K. Mace; Justin I. McIntyre; Timothy L. Stewart; Rob D. Mackley; Brian D. Milbrath; Dudley Emer; S. R. Biegalski
A Noble Gas Migration Experiment injected 127Xe, 37Ar, and sulfur hexafluoride into a former underground nuclear explosion shot cavity. These tracer gases were allowed to migrate from the cavity to near-surface and surface sampling locations and were detected in soil gas samples collected using various on-site inspection sampling approaches. Based on this experiment we came to the following conclusions: (1) SF6 was enriched in all of the samples relative to both 37Ar and 127Xe. (2) There were no significant differences in the 127Xe to 37Ar ratio in the samples relative to the ratio injected into the cavity. (3) The migratory behavior of the chemical and radiotracers did not fit typical diffusion modeling scenarios.
Journal of Radioanalytical and Nuclear Chemistry | 2016
Justin I. McIntyre; Agung Agusbudiman; Ian M. Cameron; Johannes Robert Dumais; Paul W. Eslinger; Abdelhakim Gheddou; Kirill Khrustalev; Pujadi Marsoem; Harry S. Miley; Mika Nikkinen; Amanda M. Prinke; Michael D. Ripplinger; Brian T. Schrom; William A. Sliger; Ulrich Stoehlker; Gatot Suhariyono; Glen A. Warren; Susilo Widodo; Vincent T. Woods
Radioxenon emissions from fission-based radiopharmaceutical production are a major source of background concentrations affecting the radioxenon detection systems of the international monitoring system (IMS). Collection of real-time emissions data from production facilities makes it possible to screen out some medical isotope signatures from the IMS radioxenon data sets. This paper describes an effort to obtain and analyze real-time stack emissions data with the design, construction and installation of a small stack monitoring system developed by a joint CTBTO-IDC, BATAN, and Pacific Northwest National Laboratory team at the BaTek medical isotope production facility near Jakarta, Indonesia.
Journal of Radioanalytical and Nuclear Chemistry | 2013
Harry S. Miley; Ted W. Bowyer; Mark D. Engelmann; Paul W. Eslinger; Judah I. Friese; Lawrence R. Greenwood; Derek A. Haas; James C. Hayes; Martin E. Keillor; Robert A. Kiddy; Randy R. Kirkham; Jonathan W. Landen; Elwood A. Lepel; Lance S. Lidey; Kevin E. Litke; Scott J. Morris; Khris B. Olsen; Robert C. Thompson; Blandina R. Valenzuela; Vincent T. Woods; S. R. Biegalski
Aerosol collections were initiated at several locations by Pacific Northwest National Laboratory (PNNL) shortly after the Great East Japan earthquake of May 2011. Aerosol samples were transferred to laboratory high-resolution gamma spectrometers for analysis. Similar to treaty monitoring stations operating across the Northern hemisphere, iodine and other isotopes which could be volatilized at high temperature were detected. Though these locations are not far apart, they have significant variations with respect to water, mountain-range placement, and local topography. Variation in computed source terms will be shown to bound the variability of this approach to source estimation.
Journal of Environmental Radioactivity | 2015
Paul W. Eslinger; Ian M. Cameron; Johannes Robert Dumais; Yudi Imardjoko; Pujadi Marsoem; Justin I. McIntyre; Harry S. Miley; Ulrich Stoehlker; Susilo Widodo; Vincent T. Woods
BATAN Teknologi (BaTek) operates an isotope production facility in Serpong, Indonesia that supplies (99m)Tc for use in medical procedures. Atmospheric releases of (133)Xe in the production process at BaTek are known to influence the measurements taken at the closest stations of the radionuclide network of the International Monitoring System (IMS). The purpose of the IMS is to detect evidence of nuclear explosions, including atmospheric releases of radionuclides. The major xenon isotopes released from BaTek are also produced in a nuclear explosion, but the isotopic ratios are different. Knowledge of the magnitude of releases from the isotope production facility helps inform analysts trying to decide if a specific measurement result could have originated from a nuclear explosion. A stack monitor deployed at BaTek in 2013 measured releases to the atmosphere for several isotopes. The facility operates on a weekly cycle, and the stack data for June 15-21, 2013 show a release of 1.84 × 10(13) Bq of (133)Xe. Concentrations of (133)Xe in the air are available at the same time from a xenon sampler located 14 km from BaTek. An optimization process using atmospheric transport modeling and the sampler air concentrations produced a release estimate of 1.88 × 10(13) Bq. The same optimization process yielded a release estimate of 1.70 × 10(13) Bq for a different week in 2012. The stack release value and the two optimized estimates are all within 10% of each other. Unpublished production data and the release estimate from June 2013 yield a rough annual release estimate of 8 × 10(14) Bq of (133)Xe in 2014. These multiple lines of evidence cross-validate the stack release estimates and the release estimates based on atmospheric samplers.
Journal of Radioanalytical and Nuclear Chemistry | 2013
Vincent T. Woods; Ted W. Bowyer; S. R. Biegalski; Lawrence R. Greenwood; Derek A. Haas; James C. Hayes; Elwood A. Lepel; Harry S. Miley; Scott J. Morris
Two independent radionuclide aerosol air samplers were operated at Pacific Northwest National Laboratory in close proximity during the Fukushima reactor releases. One system was an automated aerosol collection and analysis unit, whereas the other was a manual sampler of simpler design. The samples collected from each sampler showed correlation in radionuclide activity, although some variations were observed. During this unique event, the small variations observed between the co-located air samplers illustrate the effectiveness of a way to acquire useful parallel samples for scientific purposes. The results in radionuclide activity concentration show that, in some circumstances, use of a manual high volume air sampler in parallel to a complex automated sampler can produce results that are of comparable quality to International Monitoring System samples.
Journal of Radioanalytical and Nuclear Chemistry | 2013
James C. Hayes; Ted W. Bowyer; Elsa A. Cordova; Randy R. Kirkham; Alex C. Misner; Khris B. Olsen; Vincent T. Woods; Dudley Emer
It is well known that radon is present in relatively high concentrations below the surface of the Earth due to natural decay of uranium and thorium. However, less information is available on the background levels of other isotopes such as 133Xe and 131mXe produced via spontaneous fission of either manmade or naturally occurring elements. The background concentrations of radioxenon in the subsurface are important to understand because these isotopes potentially can be used to confirm violations of the comprehensive nuclear-test-ban treaty during an on-site inspection. Recently, Pacific Northwest National Laboratory measured radioxenon concentrations from the subsurface at the Nevada Nuclear Security Site (NNSS—formerly known as the Nevada Test Site) to determine whether xenon isotope background levels could be detected from spontaneous fission of naturally occurring uranium or legacy 240Pu as a result of historic nuclear testing. In this paper, we discuss the results of those measurements and review the sources of xenon background that must be taken into account during OSI noble gas measurements.
Archive | 2011
Robert C. Thompson; Timothy L. Stewart; Jesse A. Willett; Vincent T. Woods
The Transportable Xenon Laboratory Operations Manual is a guide to set up and shut down TXL, a fully contained laboratory made up of instruments to identify and measure concentrations of the radioactive isotopes of xenon by taking air samples and analyzing them. The TXL is housed in a standard-sized shipping container. TXL can be shipped to and function in any country in the world.
Sixteenth International Conference on Solid State Lighting and LED-based Illumination Systems | 2017
Lance Hubbard; Nikolaus Dietz; Mark Vernon; Ramon Collazo; Seiji Mita; Ronny Kirste; Zlatko Sitar; Vincent T. Woods
This contribution will present the structural and optoelectronic properties of GaN/AlGaN heterostructures grown by Metal Organic Chemical Vapor Deposition (MOCVD) on GaN/sapphire templates. The target parameters for the materials heterostructures have been modeled for utilization in Avalanche Photodiode Detector Structures (APD) operating in the near and deep UV region. Optical modeling has improved absorption within the heterojunction as well as maximized light trapping within the device. Electronic modeling has determined the optimal dopant concentrations for maximum impact ionization rate, as well as tolerance to defects and unintentional doping. This application will require advances in the defect densities, surface morphology, and interfaces. Surface morphological and structural properties of GaN/AlGaN heterostructures are analyzed by Atomic Force Microscopy, Raman spectroscopy, and X-ray diffraction. The optoelectronic properties (phonon structures, free carrier concentrations, and carrier mobility) as well as layer thickness information, are determined by Fourier Transform Infrared Reflectance spectroscopy. A correlation of interfacial defects (type and concentration) with microscopic structural properties, surface morphology, and optoelectronic properties (free carrier concentration and high-frequency dielectric function) is discussed.
Archive | 2014
Ted W. Bowyer; Christopher J. Gesh; Derek A. Haas; James C. Hayes; Lenna A. Mahoney; Joseph E. Meacham; Donaldo P. Mendoza; Khris B. Olsen; Amanda M. Prinke; Bruce D. Reid; Vincent T. Woods
We report on a technique to detect and quantify the amount of 240Pu in a large tank used to store nuclear waste from plutonium production at the Hanford nuclear site. While the contents of this waste tank are known from previous grab sample measurements, our technique could allow for determination of the amount of 240Pu in the tank without costly sample retrieval and analysis of this highly radioactive material. This technique makes an assumption, which was confirmed, that 240Pu dominates the spontaneous fissions occurring in the tank.
Journal of Environmental Radioactivity | 2014
Reynaido Gomez; S. R. Biegalski; Vincent T. Woods
Radionuclide aerosol sampling is a vital component in the detection of nuclear explosions, nuclear accidents, and other radiation releases. This was proven by the detection and tracking of emissions from the Fukushima Daiichi incident across the globe by IMS stations. Two separate aerosol samplers were operated in Richland, WA following the event and debris from the accident were measured at levels well above detection limits. While the atmospheric activity concentration of radionuclides generally compared well between the two stations, they did not agree within uncertainties. This paper includes a detailed study of the aerosol sample homogeneity of (134)Cs and (137)Cs, then relates it to the overall uncertainty of the original measurement. Our results show that sample inhomogeneity adds an additional 5-10% uncertainty to each aerosol measurement and that this uncertainty is in the same range as the discrepancies between the two aerosol sample measurements from Richland, WA.