Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Virginia A. Hughes is active.

Publication


Featured researches published by Virginia A. Hughes.


Journal of Clinical Investigation | 2008

Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice

John Falardeau; Wilson C. J. Chung; Andrew Beenken; Taneli Raivio; Lacey Plummer; Yisrael Sidis; Elka Jacobson-Dickman; Anna V. Eliseenkova; Jinghong Ma; Andrew A. Dwyer; Richard Quinton; Sandra Na; Janet E. Hall; Céline Huot; Natalie Alois; Simon Pearce; Lindsay W. Cole; Virginia A. Hughes; Moosa Mohammadi; Pei Tsai; Nelly Pitteloud

Idiopathic hypogonadotropic hypogonadism (IHH) with anosmia (Kallmann syndrome; KS) or with a normal sense of smell (normosmic IHH; nIHH) are heterogeneous genetic disorders associated with deficiency of gonadotropin-releasing hormone (GnRH). While loss-of-function mutations in FGF receptor 1 (FGFR1) cause human GnRH deficiency, to date no specific ligand for FGFR1 has been identified in GnRH neuron ontogeny. Using a candidate gene approach, we identified 6 missense mutations in FGF8 in IHH probands with variable olfactory phenotypes. These patients exhibited varied degrees of GnRH deficiency, including the rare adult-onset form of hypogonadotropic hypogonadism. Four mutations affected all 4 FGF8 splice isoforms (FGF8a, FGF8b, FGF8e, and FGF8f), while 2 mutations affected FGF8e and FGF8f isoforms only. The mutant FGF8b and FGF8f ligands exhibited decreased biological activity in vitro. Furthermore, mice homozygous for a hypomorphic Fgf8 allele lacked GnRH neurons in the hypothalamus, while heterozygous mice showed substantial decreases in the number of GnRH neurons and hypothalamic GnRH peptide concentration. In conclusion, we identified FGF8 as a gene implicated in GnRH deficiency in both humans and mice and demonstrated an exquisite sensitivity of GnRH neuron development to reductions in FGF8 signaling.


Journal of Clinical Investigation | 2007

Digenic mutations account for variable phenotypes in idiopathic hypogonadotropic hypogonadism

Nelly Pitteloud; Richard Quinton; Simon Pearce; Taneli Raivio; James S. Acierno; Andrew A. Dwyer; Lacey Plummer; Virginia A. Hughes; Stephanie B. Seminara; Yu-Zhu Cheng; Wei-Ping Li; Gavin S. MacColl; Anna V. Eliseenkova; Shaun K. Olsen; Omar A. Ibrahimi; Frances J. Hayes; Paul A. Boepple; Janet E. Hall; Pierre Bouloux; Moosa Mohammadi; William F. Crowley

Idiopathic hypogonadotropic hypogonadism (IHH) due to defects of gonadotropin-releasing hormone (GnRH) secretion and/or action is a developmental disorder of sexual maturation. To date, several single-gene defects have been implicated in the pathogenesis of IHH. However, significant inter- and intrafamilial variability and apparent incomplete penetrance in familial cases of IHH are difficult to reconcile with the model of a single-gene defect. We therefore hypothesized that mutations at different IHH loci interact in some families to modify their phenotypes. To address this issue, we studied 2 families, one with Kallmann syndrome (IHH and anosmia) and another with normosmic IHH, in which a single-gene defect had been identified: a heterozygous FGF receptor 1 (FGFR1) mutation in pedigree 1 and a compound heterozygous gonadotropin-releasing hormone receptor (GNRHR) mutation in pedigree 2, both of which varied markedly in expressivity within and across families. Further candidate gene screening revealed a second heterozygous deletion in the nasal embryonic LHRH factor (NELF) gene in pedigree 1 and an additional heterozygous FGFR1 mutation in pedigree 2 that accounted for the considerable phenotypic variability. Therefore, 2 different gene defects can synergize to produce a more severe phenotype in IHH families than either alone. This genetic model could account for some phenotypic heterogeneity seen in GnRH deficiency.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Oligogenic basis of isolated gonadotropin-releasing hormone deficiency

Gerasimos P. Sykiotis; Lacey Plummer; Virginia A. Hughes; Margaret G. Au; Sadia Durrani; Sadhana Nayak-Young; Andrew A. Dwyer; Richard Quinton; Janet E. Hall; James F. Gusella; Stephanie B. Seminara; William F. Crowley; Nelly Pitteloud

Between the genetic extremes of rare monogenic and common polygenic diseases lie diverse oligogenic disorders involving mutations in more than one locus in each affected individual. Elucidating the principles of oligogenic inheritance and mechanisms of genetic interactions could help unravel the newly appreciated role of rare sequence variants in polygenic disorders. With few exceptions, however, the precise genetic architecture of oligogenic diseases remains unknown. Isolated gonadotropin-releasing hormone (GnRH) deficiency caused by defective secretion or action of hypothalamic GnRH is a rare genetic disease that manifests as sexual immaturity and infertility. Recent reports of patients who harbor pathogenic rare variants in more than one gene have challenged the long-held view that the disorder is strictly monogenic, yet the frequency and extent of oligogenicity in isolated GnRH deficiency have not been investigated. By systematically defining genetic variants in large cohorts of well-phenotyped patients (n = 397), family members, and unaffected subjects (n = 179) for the majority of known disease genes, this study suggests a significant role of oligogenicity in this disease. Remarkably, oligogenicity in isolated GnRH deficiency was as frequent as homozygosity/compound heterozygosity at a single locus (2.5%). Among the 22% of patients with detectable rare protein-altering variants, the likelihood of oligogenicity was 11.3%. No oligogenicity was detected among controls (P < 0.05), even though deleterious variants were present. Viewing isolated GnRH deficiency as an oligogenic condition has implications for understanding the pathogenesis of its reproductive and nonreproductive phenotypes; deciphering the etiology of common GnRH-related disorders; and modeling the genetic architecture of other oligogenic and multifactorial diseases.


The Journal of Clinical Endocrinology and Metabolism | 2010

TAC3/TACR3 Mutations Reveal Preferential Activation of Gonadotropin-Releasing Hormone Release by Neurokinin B in Neonatal Life Followed by Reversal in Adulthood

Elena Gianetti; Cintia Tusset; Sekoni D. Noel; Margaret G. Au; Andrew A. Dwyer; Virginia A. Hughes; Ana Paula Abreu; Jessica Carroll; Ericka B. Trarbach; Leticia Ferreira Gontijo Silveira; Elaine Maria Frade Costa; Berenice B. Mendonca; Margaret de Castro; Adriana Lofrano; Janet E. Hall; Erol Bolu; Metin Ozata; Richard Quinton; John K. Amory; Susan E. Stewart; Wiebke Arlt; Trevor R. Cole; William F. Crowley; Ursula B. Kaiser; Ana Claudia Latronico; Stephanie B. Seminara

CONTEXT Mutations in TAC3 and TACR3 (encoding neurokinin B and its receptor) have been identified in Turkish patients with idiopathic hypogonadotropic hypogonadism (IHH), but broader populations have not yet been tested and genotype-phenotype correlations have not been established. OBJECTIVE A broad cohort of normosmic IHH probands was screened for mutations in TAC3/TACR3 to evaluate the prevalence of such mutations and define the genotype/phenotype relationships. DESIGN AND SETTING The study consisted of sequencing of TAC3/TACR3, in vitro functional assays, and neuroendocrine phenotyping conducted in tertiary care centers worldwide. PATIENTS OR OTHER PARTICIPANTS 345 probands, 18 family members, and 292 controls were studied. INTERVENTION Reproductive phenotypes throughout reproductive life and before and after therapy were examined. MAIN OUTCOME MEASURE Rare sequence variants in TAC3/TACR3 were detected. RESULTS In TACR3, 19 probands harbored 13 distinct coding sequence rare nucleotide variants [three nonsense mutations, six nonsynonymous, four synonymous (one predicted to affect splicing)]. In TAC3, one homozygous single base pair deletion was identified, resulting in complete loss of the neurokinin B decapeptide. Phenotypic information was available on 16 males and seven females with coding sequence variants in TACR3/TAC3. Of the 16 males, 15 had microphallus; none of the females had spontaneous thelarche. Seven of the 16 males and five of the seven females were assessed after discontinuation of therapy; six of the seven males and four of the five females demonstrated evidence for reversibility of their hypogonadotropism. CONCLUSIONS Mutations in the neurokinin B pathway are relatively common as causes of hypogonadism. Although the neurokinin B pathway appears essential during early sexual development, its importance in sustaining the integrity of the hypothalamic-pituitary-gonadal axis appears attenuated over time.


The Journal of Clinical Endocrinology and Metabolism | 2008

Mutations in Prokineticin 2 and Prokineticin receptor 2genes in Human Gonadotrophin-Releasing Hormone Deficiency: Molecular Genetics and Clinical Spectrum

Lindsay W. Cole; Yisrael Sidis; Chengkang Zhang; Richard Quinton; Lacey Plummer; Duarte Pignatelli; Virginia A. Hughes; Andrew A. Dwyer; Taneli Raivio; Frances J. Hayes; Stephanie B. Seminara; Céline Huot; Nathalie Alos; Phyllis W. Speiser; Akira Takeshita; Guy VanVliet; Simon Pearce; William F. Crowley; Qun-Yong Zhou; Nelly Pitteloud

CONTEXT Mice deficient in prokineticin 2(PROK2) and prokineticin receptor2 (PROKR2) exhibit variable olfactory bulb dysgenesis and GnRH neuronal migration defects reminiscent of human GnRH deficiency. OBJECTIVES We aimed to screen a large cohort of patients with Kallmann syndrome (KS) and normosmic idiopathic hypogonadotropic hypogonadism (IHH) for mutations in PROK2/PROKR2, evaluate their prevalence, define the genotype/phenotype relationship, and assess the functionality of these mutant alleles in vitro. DESIGN Sequencing of the PROK2 and PROKR2 genes was performed in 170 KS patients and 154 nIHH. Mutations were examined using early growth response 1-luciferase assays in HEK 293 cells and aequorin assays in Chinese hamster ovary cells. RESULTS Four heterozygous and one homozygous PROK2 mutation (p.A24P, p.C34Y, p.I50M, p.R73C, and p.I55fsX1) were identified in five probands. Four probands had KS and one nIHH, and all had absent puberty. Each mutant peptide impaired receptor signaling in vitro except the I50M. There were 11 patients who carried a heterozygous PROKR2 mutation (p.R85C, p.Y113H, p.V115M, p.R164Q, p.L173R, p.W178S, p.S188L, p.R248Q, p.V331M, and p.R357W). Among them, six had KS, four nIHH, and one KS proband carried both a PROKR2 (p.V115M) and PROK2 (p.A24P) mutation. Reproductive phenotypes ranged from absent to partial puberty to complete reversal of GnRH deficiency after discontinuation of therapy. All mutant alleles appear to decrease intracellular calcium mobilization; seven exhibited decreased MAPK signaling, and six displayed decreased receptor expression. Nonreproductive phenotypes included fibrous dysplasia, sleep disorder, synkinesia, and epilepsy. Finally, considerable variability was evident in family members with the same mutation, including asymptomatic carriers. CONCLUSION Loss-of-function mutations in PROK2 and PROKR2 underlie both KS and nIHH.


The New England Journal of Medicine | 2011

A Genetic Basis for Functional Hypothalamic Amenorrhea

Lisa M. Caronia; Cecilia Martin; Corrine K. Welt; Gerasimos P. Sykiotis; Richard Quinton; Apisadaporn Thambundit; Magdalena Avbelj; Sadhana Dhruvakumar; Lacey Plummer; Virginia A. Hughes; Stephanie B. Seminara; Paul A. Boepple; Yisrael Sidis; William F. Crowley; Kathryn A. Martin; Janet E. Hall; Nelly Pitteloud

BACKGROUND Functional hypothalamic amenorrhea is a reversible form of gonadotropin-releasing hormone (GnRH) deficiency commonly triggered by stressors such as excessive exercise, nutritional deficits, or psychological distress. Women vary in their susceptibility to inhibition of the reproductive axis by such stressors, but it is unknown whether this variability reflects a genetic predisposition to hypothalamic amenorrhea. We hypothesized that mutations in genes involved in idiopathic hypogonadotropic hypogonadism, a congenital form of GnRH deficiency, are associated with hypothalamic amenorrhea. METHODS We analyzed the coding sequence of genes associated with idiopathic hypogonadotropic hypogonadism in 55 women with hypothalamic amenorrhea and performed in vitro studies of the identified mutations. RESULTS Six heterozygous mutations were identified in 7 of the 55 patients with hypothalamic amenorrhea: two variants in the fibroblast growth factor receptor 1 gene FGFR1 (G260E and R756H), two in the prokineticin receptor 2 gene PROKR2 (R85H and L173R), one in the GnRH receptor gene GNRHR (R262Q), and one in the Kallmann syndrome 1 sequence gene KAL1 (V371I). No mutations were found in a cohort of 422 controls with normal menstrual cycles. In vitro studies showed that FGFR1 G260E, FGFR1 R756H, and PROKR2 R85H are loss-of-function mutations, as has been previously shown for PROKR2 L173R and GNRHR R262Q. CONCLUSIONS Rare variants in genes associated with idiopathic hypogonadotropic hypogonadism are found in women with hypothalamic amenorrhea, suggesting that these mutations may contribute to the variable susceptibility of women to the functional changes in GnRH secretion that characterize hypothalamic amenorrhea. Our observations provide evidence for the role of rare variants in common multifactorial disease. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and others; ClinicalTrials.gov number, NCT00494169.).


Proceedings of the National Academy of Sciences of the United States of America | 2011

Heparan sulfate 6-O-sulfotransferase 1, a gene involved in extracellular sugar modifications, is mutated in patients with idiopathic hypogonadotrophic hypogonadism

Janne Tornberg; Gerasimos P. Sykiotis; Kimberly Keefe; Lacey Plummer; Xuan Hoang; Janet E. Hall; Richard Quinton; Stephanie B. Seminara; Virginia A. Hughes; Guy Van Vliet; Stan Van Uum; William F. Crowley; Hiroko Habuchi; Koji Kimata; Nelly Pitteloud; Hannes E. Bülow

Neuronal development is the result of a multitude of neural migrations, which require extensive cell-cell communication. These processes are modulated by extracellular matrix components, such as heparan sulfate (HS) polysaccharides. HS is molecularly complex as a result of nonrandom modifications of the sugar moieties, including sulfations in specific positions. We report here mutations in HS 6-O-sulfotransferase 1 (HS6ST1) in families with idiopathic hypogonadotropic hypogonadism (IHH). IHH manifests as incomplete or absent puberty and infertility as a result of defects in gonadotropin-releasing hormone neuron development or function. IHH-associated HS6ST1 mutations display reduced activity in vitro and in vivo, suggesting that HS6ST1 and the complex modifications of extracellular sugars are critical for normal development in humans. Genetic experiments in Caenorhabditis elegans reveal that HS cell-specifically regulates neural branching in vivo in concert with other IHH-associated genes, including kal-1, the FGF receptor, and FGF. These findings are consistent with a model in which KAL1 can act as a modulatory coligand with FGF to activate the FGF receptor in an HS-dependent manner.


The Journal of Clinical Endocrinology and Metabolism | 2011

Expanding the Phenotype and Genotype of Female GnRH Deficiency

Natalie D. Shaw; Stephanie B. Seminara; Corrine K. Welt; Margaret G. Au; Lacey Plummer; Virginia A. Hughes; Andrew A. Dwyer; Kathryn A. Martin; Richard Quinton; Verónica Mericq; Paulina M. Merino; James F. Gusella; William F. Crowley; Nelly Pitteloud; Janet E. Hall

CONTEXT GnRH deficiency is a rare genetic disorder of absent or partial pubertal development. The clinical and genetic characteristics of GnRH-deficient women have not been well-described. OBJECTIVE To determine the phenotypic and genotypic spectrum of a large series of GnRH-deficient women. DESIGN, SETTING, AND SUBJECTS Retrospective study of 248 females with GnRH deficiency evaluated at an academic medical center between 1980 and 2010. MAIN OUTCOME MEASURES Clinical presentation, baseline endogenous GnRH secretory activity, and DNA sequence variants in 11 genes associated with GnRH deficiency. RESULTS Eighty-eight percent had undergone pubarche, 51% had spontaneous thelarche, and 10% had 1-2 menses. Women with spontaneous thelarche were more likely to demonstrate normal pubarche (P = 0.04). In 27% of women, neuroendocrine studies demonstrated evidence of some endogenous GnRH secretory activity. Thirty-six percent (a large excess relative to controls) harbored a rare sequence variant in a gene associated with GnRH deficiency (87% heterozygous and 13% biallelic), with variants in FGFR1 (15%), GNRHR (6.6%), and PROKR2 (6.6%) being most prevalent. One woman had a biallelic variant in the X-linked gene, KAL1, and nine women had heterozygous variants. CONCLUSIONS The clinical presentation of female GnRH deficiency varies from primary amenorrhea and absence of any secondary sexual characteristics to spontaneous breast development and occasional menses. In this cohort, rare sequence variants were present in all of the known genes associated with GnRH deficiency, including the novel identification of GnRH-deficient women with KAL1 variants. The pathogenic mechanism through which KAL1 variants disrupt female reproductive development requires further investigation.


The Journal of Clinical Endocrinology and Metabolism | 2012

Olfactory Phenotypic Spectrum in Idiopathic Hypogonadotropic Hypogonadism: Pathophysiological and Genetic Implications

Hilana M. Lewkowitz-Shpuntoff; Virginia A. Hughes; Lacey Plummer; Margaret G. Au; Richard L. Doty; Stephanie B. Seminara; Yee-Ming Chan; Nelly Pitteloud; William F. Crowley; Ravikumar Balasubramanian

CONTEXT The olfactory phenotype in patients with idiopathic hypogonadotropic hypogonadism (IHH) ranges from complete anosmia (Kallmann syndrome) to normosmia (normosmic IHH). However, the true prevalence of intermediary olfactory phenotypes (hyposmia) in IHH patients has not yet been assessed, and systematic correlations with anatomical and genetic abnormalities have not been reported. OBJECTIVE The objective of this study was to evaluate olfactory function in a large IHH cohort and correlate these findings with olfactory magnetic resonance imaging (MRI) and underlying genetic etiology. DESIGN AND SETTING We conducted a cross-sectional case-control study at an academic referral center. PATIENTS A total of 286 IHH patients (201 males and 85 females) and 2183 healthy historic controls (1011 males and 1172 females) were studied. MAIN OUTCOME MEASURES We measured olfactory function using the University of Pennsylvania Smell Identification Test; in 208 subjects, the genetic etiology of IHH was ascertained by DNA sequencing; in a minor subset [39 of 286 subjects (13%)], olfactory structures were determined by MRI. RESULTS In the IHH cohort, 31.5% were anosmic, 33.6% were hyposmic, and 34.9% were normosmic. Most hyposmic (seven of 11) subjects with MRI data exhibited olfactory structure abnormalities. Of hyposmic subjects, 39.5% harbored mutations in genes involved in either GnRH neuronal migration or GnRH secretion. CONCLUSIONS IHH subjects display a broad spectrum of olfactory function, with a significant hyposmic phenotype in nearly one third of subjects. The hyposmic subjects harbor mutations in genes affecting GnRH neuronal migration and its secretion, suggesting a pathophysiological overlap between Kallmann syndrome and normosmic IHH. Accurate olfactory phenotyping in IHH subjects will inform the pathophysiology of this condition and guide genetic testing.


The Journal of Clinical Endocrinology and Metabolism | 2011

GnRH-Deficient Phenotypes in Humans and Mice with Heterozygous Variants in KISS1/Kiss1

Yee-Ming Chan; Sarabeth Broder-Fingert; Sophia Paraschos; Risto Lapatto; Margaret G. Au; Virginia A. Hughes; Suzy D. C. Bianco; Le Min; Lacey Plummer; Felecia Cerrato; Adelaide De Guillebon; I-Hsuan Wu; Fazal Wahab; Andrew A. Dwyer; Susan Kirsch; Richard Quinton; Tim Cheetham; Metin Ozata; Svetlana Ten; Jean-Pierre Chanoine; Nelly Pitteloud; Kathryn A. Martin; R. Schiffmann; Hetty J. van der Kamp; Shahla Nader; Janet E. Hall; Ursula B. Kaiser; Stephanie B. Seminara

CONTEXT KISS1 is a candidate gene for GnRH deficiency. OBJECTIVE Our objective was to identify deleterious mutations in KISS1. PATIENTS AND METHODS DNA sequencing and assessment of the effects of rare sequence variants (RSV) were conducted in 1025 probands with GnRH-deficient conditions. RESULTS Fifteen probands harbored 10 heterozygous RSV in KISS1 seen in less than 1% of control subjects. Of the variants that reside within the mature kisspeptin peptide, p.F117L (but not p.S77I, p.Q82K, p.H90D, or p.P110T) reduces inositol phosphate generation. Of the variants that lie within the coding region but outside the mature peptide, p.G35S and p.C53R (but not p.A129V) are predicted in silico to be deleterious. Of the variants that lie outside the coding region, one (g.1-3659C→T) impairs transcription in vitro, and another (c.1-7C→T) lies within the consensus Kozak sequence. Of five probands tested, four had abnormal baseline LH pulse patterns. In mice, testosterone decreases with heterozygous loss of Kiss1 and Kiss1r alleles (wild-type, 274 ± 99, to double heterozygotes, 69 ± 16 ng/dl; r(2) = 0.13; P = 0.03). Kiss1/Kiss1r double-heterozygote males have shorter anogenital distances (13.0 ± 0.2 vs. 15.6 ± 0.2 mm at P34, P < 0.001), females have longer estrous cycles (7.4 ± 0.2 vs. 5.6 ± 0.2 d, P < 0.01), and mating pairs have decreased litter frequency (0.59 ± 0.09 vs. 0.71 ± 0.06 litters/month, P < 0.04) and size (3.5 ± 0.2 vs. 5.4 ± 0.3 pups/litter, P < 0.001) compared with wild-type mice. CONCLUSIONS Deleterious, heterozygous RSV in KISS1 exist at a low frequency in GnRH-deficient patients as well as in the general population in presumably normal individuals. As in Kiss1(+/-)/Kiss1r(+/-) mice, heterozygous KISS1 variants in humans may work with other genetic and/or environmental factors to cause abnormal reproductive function.

Collaboration


Dive into the Virginia A. Hughes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ursula B. Kaiser

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge