Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Viruna Neergheen is active.

Publication


Featured researches published by Viruna Neergheen.


Journal of Clinical Investigation | 2014

Missense dopamine transporter mutations associate with adult parkinsonism and ADHD

Freja Herborg Hansen; Tina Skjørringe; Saiqa Yasmeen; Natascha V. Arends; Michelle A. Sahai; Kevin Erreger; Thorvald F. Andreassen; Marion Holy; Peter J. Hamilton; Viruna Neergheen; Merete Karlsborg; Amy Hauck Newman; Simon Pope; Simon Heales; Lars Friberg; Ian Law; Lars H. Pinborg; Harald H. Sitte; Claus J. Loland; Lei Shi; Harel Weinstein; Aurelio Galli; Lena E. Hjermind; Lisbeth Birk Møller; Ulrik Gether

Parkinsonism and attention deficit hyperactivity disorder (ADHD) are widespread brain disorders that involve disturbances of dopaminergic signaling. The sodium-coupled dopamine transporter (DAT) controls dopamine homeostasis, but its contribution to disease remains poorly understood. Here, we analyzed a cohort of patients with atypical movement disorder and identified 2 DAT coding variants, DAT-Ile312Phe and a presumed de novo mutant DAT-Asp421Asn, in an adult male with early-onset parkinsonism and ADHD. According to DAT single-photon emission computed tomography (DAT-SPECT) scans and a fluoro-deoxy-glucose-PET/MRI (FDG-PET/MRI) scan, the patient suffered from progressive dopaminergic neurodegeneration. In heterologous cells, both DAT variants exhibited markedly reduced dopamine uptake capacity but preserved membrane targeting, consistent with impaired catalytic activity. Computational simulations and uptake experiments suggested that the disrupted function of the DAT-Asp421Asn mutant is the result of compromised sodium binding, in agreement with Asp421 coordinating sodium at the second sodium site. For DAT-Asp421Asn, substrate efflux experiments revealed a constitutive, anomalous efflux of dopamine, and electrophysiological analyses identified a large cation leak that might further perturb dopaminergic neurotransmission. Our results link specific DAT missense mutations to neurodegenerative early-onset parkinsonism. Moreover, the neuropsychiatric comorbidity provides additional support for the idea that DAT missense mutations are an ADHD risk factor and suggests that complex DAT genotype and phenotype correlations contribute to different dopaminergic pathologies.


Journal of Inherited Metabolic Disease | 2013

Measurement of plasma B6 vitamer profiles in children with inborn errors of vitamin B6 metabolism using an LC-MS/MS method

Emma Footitt; Peter Clayton; Kevin Mills; Simon Heales; Viruna Neergheen; Marcus Oppenheim; Philippa B. Mills

Vitamin B6 dependent seizure disorders are an important and treatable cause of childhood epilepsy. The molecular and biochemical basis for some of these disorders has only recently been elucidated and it is likely that inborn errors affecting other parts of this complex metabolic pathway are yet to be described. In man vitamin B6 ingested from the diet exists as six different vitamers, pyridoxal (PL), pyridoxamine (PM), pyridoxine (PN), pyridoxal 5’-phosphate (PLP), pyridoxamine 5’- phosphate (PMP) and pyridoxine 5’-phosphate (PNP). Its breakdown product, 4-pyridoxic acid (PA), is excreted in urine. Here we describe an analytical LC-MS/MS method to measure all vitameric B6 forms in plasma and have subsequently applied this methodology to investigate children with vitamin B6 responsive seizure disorders. We show that patients with inborn errors of B6 metabolism such as pyridox(am)ine 5’-phosphate oxidase (PNPO) deficiency have characteristic B6 profiles which allow them to be differentiated from each other and control populations, even when on treatment with B6. Regardless of diagnosis, patients on treatment doses of pyridoxine hydrochloride and pyridoxal phosphate have markedly elevated levels of some vitameric forms (PLP, PL and PA). Such mega doses of B6 treatment are known to be associated with neurotoxicity. This LC-MS/MS method will be a useful tool for treatment monitoring and may help further our understanding of mechanisms of neurotoxicity in patient groups.


The American Journal of Clinical Nutrition | 2016

Coenzyme Q10 prevents hepatic fibrosis, inflammation, and oxidative stress in a male rat model of poor maternal nutrition and accelerated postnatal growth

Jane L. Tarry-Adkins; Denise S. Fernandez-Twinn; Iain Hargreaves; Viruna Neergheen; Catherine Elizabeth Aiken; Malgorzata S. Martin-Gronert; Josie M. McConnell; Susan E. Ozanne

Background: It is well established that low birth weight and accelerated postnatal growth increase the risk of liver dysfunction in later life. However, molecular mechanisms underlying such developmental programming are not well characterized, and potential intervention strategies are poorly defined. Objectives: We tested the hypotheses that poor maternal nutrition and accelerated postnatal growth would lead to increased hepatic fibrosis (a pathological marker of liver dysfunction) and that postnatal supplementation with the antioxidant coenzyme Q10 (CoQ10) would prevent this programmed phenotype. Design: A rat model of maternal protein restriction was used to generate low-birth-weight offspring that underwent accelerated postnatal growth (termed “recuperated”). These were compared with control rats. Offspring were weaned onto standard feed pellets with or without dietary CoQ10 (1 mg/kg body weight per day) supplementation. At 12 mo, hepatic fibrosis, indexes of inflammation, oxidative stress, and insulin signaling were measured by histology, Western blot, ELISA, and reverse transcriptase–polymerase chain reaction. Results: Hepatic collagen deposition (diameter of deposit) was greater in recuperated offspring (mean ± SEM: 12 ± 2 μm) than in controls (5 ± 0.5 μm) (P < 0.001). This was associated with greater inflammation (interleukin 6: 38% ± 24% increase; P < 0.05; tumor necrosis factor α: 64% ± 24% increase; P < 0.05), lipid peroxidation (4-hydroxynonenal, measured by ELISA: 0.30 ± 0.02 compared with 0.19 ± 0.05 μg/mL per μg protein; P < 0.05), and hyperinsulinemia (P < 0.05). CoQ10 supplementation increased (P < 0.01) hepatic CoQ10 concentrations and ameliorated liver fibrosis (P < 0.001), inflammation (P < 0.001), some measures of oxidative stress (P < 0.001), and hyperinsulinemia (P < 0.01). Conclusions: Suboptimal in utero nutrition combined with accelerated postnatal catch-up growth caused more hepatic fibrosis in adulthood, which was associated with higher indexes of oxidative stress and inflammation and hyperinsulinemia. CoQ10 supplementation prevented liver fibrosis accompanied by downregulation of oxidative stress, inflammation, and hyperinsulinemia.


Journal of Neurochemistry | 2010

Pyridoxal 5′-phosphate deficiency causes a loss of aromatic L-amino acid decarboxylase in patients and human neuroblastoma cells, implications for aromatic L-amino acid decarboxylase and vitamin B6 deficiency states.

George F.G. Allen; Viruna Neergheen; Marcus Oppenheim; Julia C. Fitzgerald; Emma Footitt; Keith Hyland; Peter Clayton; John M. Land; Simon Heales

J. Neurochem. (2010) 114, 87–96.


PLOS ONE | 2016

Coenzyme Q10 Levels Are Decreased in the Cerebellum of Multiple-System Atrophy Patients

Lucia Schottlaender; Conceição Bettencourt; Ap Kiely; Annapurna Chalasani; Viruna Neergheen; Janice L. Holton; I Hargreaves; Henry Houlden

Background The objective of this study was to evaluate whether the levels of coenzyme Q10 (CoQ10) in brain tissue of multiple system atrophy (MSA) patients differ from those in elderly controls and in patients with other neurodegenerative diseases. Methods Flash frozen brain tissue of a series of 20 pathologically confirmed MSA patients [9 olivopontocerebellar atrophy (OPCA) type, 6 striatonigral degeneration (SND) type, and 5 mixed type] was used for this study. Elderly controls (n = 37) as well as idiopathic Parkinsons disease (n = 7), dementia with Lewy bodies (n = 20), corticobasal degeneration (n = 15) and cerebellar ataxia (n = 18) patients were used as comparison groups. CoQ10 was measured in cerebellar and frontal cortex tissue by high performance liquid chromatography. Results We detected a statistically significant decrease (by 3–5%) in the level of CoQ10 in the cerebellum of MSA cases (P = 0.001), specifically in OPCA (P = 0.001) and mixed cases (P = 0.005), when compared to controls as well as to other neurodegenerative diseases [dementia with Lewy bodies (P<0.001), idiopathic Parkinsons disease (P<0.001), corticobasal degeneration (P<0.001), and cerebellar ataxia (P = 0.001)]. Conclusion Our results suggest that a perturbation in the CoQ10 biosynthetic pathway is associated with the pathogenesis of MSA but the mechanism behind this finding remains to be elucidated.


Mitochondrion | 2016

Secondary coenzyme Q10 deficiencies in oxidative phosphorylation (OXPHOS) and non-OXPHOS disorders.

Delia Yubero; Miguel A. Martín; Julio Montoya; Antonia Ribes; Manuela Grazina; Eva Trevisson; Juan Carlos Rodriguez-Aguilera; Iain Hargreaves; Leonardo Salviati; Plácido Navas; Rafael Artuch; C. Jou; C. Jimenez-Mallebrera; A. Nascimento; Belén Pérez-Dueñas; Carlos Ortez; Federico Ramos; Jaume Colomer; Mar O’Callaghan; Mercè Pineda; Angels García-Cazorla; Carmina Espinós; Angels Ruiz; Alfons Macaya; Anna Marcé-Grau; Judit García-Villoria; Angela Arias; Sonia Emperador; Eduardo Ruiz-Pesini; Ester López-Gallardo

We evaluated the coenzyme Q₁₀ (CoQ) levels in patients who were diagnosed with mitochondrial oxidative phosphorylation (OXPHOS) and non-OXPHOS disorders (n=72). Data from the 72 cases in this study revealed that 44.4% of patients showed low CoQ concentrations in either their skeletal muscle or skin fibroblasts. Our findings suggest that secondary CoQ deficiency is a common finding in OXPHOS and non-OXPHOS disorders. We hypothesize that cases of CoQ deficiency associated with OXPHOS defects could be an adaptive mechanism to maintain a balanced OXPHOS, although the mechanisms explaining these deficiencies and the pathophysiological role of secondary CoQ deficiency deserves further investigation.


Neurochemistry International | 2013

Levels of 5-methyltetrahydrofolate and ascorbic acid in cerebrospinal fluid are correlated: Implications for the accelerated degradation of folate by reactive oxygen species

Sophie-Beth Aylett; Viruna Neergheen; Iain Hargreaves; Simon Eaton; John M. Land; Shamima Rahman; Simon Heales

Deficiency of 5-methyltetrahydrofolate (5-MTHF) in cerebrospinal fluid (CSF) is associated with a number of neurometabolic conditions including mitochondrial electron transport chain defects. Whilst failure of the active transport of 5-methyltetrahydrofolate (5-MTHF) into the CSF compartment has been proposed as a potential mechanism responsible for the 5-MTHF deficiency seen in mitochondrial disorders, it is becoming increasingly clear that other mechanisms are involved. Here, we have considered the role of oxidative stress as a contributing mechanism. Concerning, ascorbic acid (AA), we have established a CSF reference range (103-303μM) and demonstrated a significant positive correlation between 5-MTHF and AA. Furthermore, CSF itself was also shown to convey antioxidant properties towards 5-MTHF. However, this protection could be overcome by the introduction of a hydroxyl radical generating system. Using a neuronal model system, inhibition of mitochondrial complex I, by 58%, was associated with a 23% increase in superoxide generation and a significantly increased loss of 5-MTHF from the extracellular medium. Addition of AA (150μM) was able to prevent this increased 5-MTHF catabolism. We conclude that increased generation of reactive oxygen species and/or loss of CSF antioxidants are also factors to consider with regard to the development of a central 5-MTHF deficiency. Co-supplementation of AA together with appropriate folate replacement may be of therapeutic benefit.


Disease Models & Mechanisms | 2016

Poor maternal nutrition and accelerated postnatal growth induces an accelerated aging phenotype and oxidative stress in skeletal muscle of male rats

Jane L. Tarry-Adkins; Denise S. Fernandez-Twinn; Jian-Hua Chen; Iain Hargreaves; Viruna Neergheen; Catherine Elizabeth Aiken; Susan E. Ozanne

ABSTRACT ‘Developmental programming’, which occurs as a consequence of suboptimal in utero and early environments, can be associated with metabolic dysfunction in later life, including an increased incidence of cardiovascular disease and type 2 diabetes, and predisposition of older men to sarcopenia. However, the molecular mechanisms underpinning these associations are poorly understood. Many conditions associated with developmental programming are also known to be associated with the aging process. We therefore utilized our well-established rat model of low birth weight and accelerated postnatal catch-up growth (termed ‘recuperated’) in this study to establish the effects of suboptimal maternal nutrition on age-associated factors in skeletal muscle. We demonstrated accelerated telomere shortening (a robust marker of cellular aging) as evidenced by a reduced frequency of long telomeres (48.5-8.6 kb) and an increased frequency of short telomeres (4.2-1.3 kb) in vastus lateralis muscle from aged recuperated offspring compared to controls. This was associated with increased protein expression of the DNA-damage-repair marker 8-oxoguanine-glycosylase (OGG1) in recuperated offspring. Recuperated animals also demonstrated an oxidative stress phenotype, with decreased citrate synthase activity, increased electron-transport-complex activities of complex I, complex II-III and complex IV (all markers of functional mitochondria), and increased xanthine oxidase (XO), p67phox and nuclear-factor kappa-light-chain-enhancer of activated B-cells (NF-κB). Recuperated offspring also demonstrated increased antioxidant defense capacity, with increased protein expression of manganese superoxide dismutase (MnSOD), copper-zinc superoxide dismutase (CuZnSOD), catalase and heme oxygenase-1 (HO1), all of which are known targets of NF-κB and can be upregulated as a consequence of oxidative stress. Recuperated offspring also had a pro-inflammatory phenotype, as evidenced by increased tumor necrosis factor-α (TNFα) and interleukin-1β (IL1β) protein levels. Taken together, we demonstrate, for the first time to our knowledge, an accelerated aging phenotype in skeletal muscle in the context of developmental programming. These findings may pave the way for suitable interventions in at-risk populations. Summary: Muscle of ‘developmentally programmed’ rat offspring demonstrated accelerated aging and oxidative stress, which could explain why some individuals are at greater risk of developing age-associated muscular dysfunction than others.


Biofactors | 2015

Determination of urinary coenzyme Q10 by HPLC with electrochemical detection: Reference values for a paediatric population.

Delia Yubero; Maria Ramos; Viruna Neergheen; Plácido Navas; Rafael Artuch; Iain Hargreaves

Kidney dysfunction is being increasingly associated with mitochondrial diseases and coenzyme Q10 (CoQ) deficiency. The assessment of CoQ status requires the biochemical determination of CoQ in biological fluids and different cell types, but no methods have been developed as yet for the analysis of CoQ in excretory systems. The aim of this study was to standardize a new procedure for urinary CoQ determination and to establish reference values for a paediatric population. Urinary CoQ was analyzed by HPLC with electrochemical detection. Reference values (n = 43) were stratified into two age groups (2-10 years: range 24-109 nmol CoQ/gram of pellet protein; 11-17 years: range 43-139 nmol CoQ/gram of pellet protein). In conclusion, urinary CoQ analysis is a noninvasive, reliable, and reproducible method to determine urinary tract CoQ status.


Mitochondrion | 2017

Evidence of oxidative stress and mitochondrial dysfunction in spinocerebellar ataxia type 2 (SCA2) patient fibroblasts: Effect of coenzyme Q10 supplementation on these parameters

Nanna Cornelius; Jonathan H. Wardman; Iain Hargreaves; Viruna Neergheen; Anne Sigaard Bie; Zeynep Tümer; Jørgen E. Nielsen; Troels Tolstrup Nielsen

Spinocerebellar ataxia type 2 (SCA2) is a rare neurodegenerative disorder caused by a CAG repeat expansion in the ataxin-2 gene. We show increased oxidative stress, abnormalities in the antioxidant system, changes in complexes involved in oxidative phosphorylation and changes in mitochondrial morphology in SCA2 patient fibroblasts compared to controls, and we show that treatment with CoQ10 can partially reverse these changes. Together, our results suggest that oxidative stress and mitochondrial dysfunction may be contributory factors to the pathophysiology of SCA2 and that therapeutic strategies involving manipulation of the antioxidant system could prove to be of clinical benefit.

Collaboration


Dive into the Viruna Neergheen's collaboration.

Top Co-Authors

Avatar

Iain Hargreaves

University College London

View shared research outputs
Top Co-Authors

Avatar

Simon Heales

Great Ormond Street Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Delia Yubero

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Emma Footitt

Great Ormond Street Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Clayton

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Simon Pope

University College London

View shared research outputs
Top Co-Authors

Avatar

Plácido Navas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Ap Kiely

UCL Institute of Neurology

View shared research outputs
Researchain Logo
Decentralizing Knowledge