Vladimir B. Ritov
University of Pittsburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vladimir B. Ritov.
Diabetes | 2007
Frederico G.S. Toledo; Elizabeta V. Menshikova; Vladimir B. Ritov; Koichiro Azuma; Zofia Radiková; James P. DeLany; David E. Kelley
OBJECTIVE— Reduced mitochondrial capacity in skeletal muscle occurs in type 2 diabetic patients and in those at increased risk for this disorder, but the extent to which mitochondrial dysfunction in type 2 diabetic patients is remediable by physical activity and weight loss intervention is uncertain. We sought to address whether an intervention of daily moderate-intensity exercise combined with moderate weight loss can increase skeletal muscle mitochondrial content in type 2 diabetic patients and to address the relationship with amelioration of insulin resistance and hyperglycemia. RESEARCH DESIGN AND METHODS— Muscle biopsies were obtained before and after a 4-month intervention to assess mitochondrial morphology, mitochondrial DNA content, and mitochondrial enzyme activities. Glucose control, body composition, aerobic fitness, and insulin sensitivity were measured. RESULTS— In response to a weight loss of 7.1 ± 0.8% and a 12 ± 1.6% improvement in Vo2max (P < 0.05), insulin sensitivity improved by 59 ± 21% (P < 0.05). There were significant increases in skeletal muscle mitochondrial density (by 67 ± 17%, P < 0.01), cardiolipin content (55 ± 17%, P < 0.01), and mitochondrial oxidation enzymes. Energy expenditure during physical activity correlated with the degree of improvement in insulin sensitivity (r = 0.84, P < 0.01), and, in turn, improvement in mitochondrial content was a strong correlate of intervention-induced improvement in A1C and fasting plasma glucose. CONCLUSIONS— Intensive short-term lifestyle modifications can restore mitochondrial content and functional capacity in skeletal muscle in type 2 diabetic patients. The improvement in the oxidative capacity of skeletal muscle may be a key component mediating salutary effects of lifestyle interventions on hyperglycemia and insulin resistance.
Journal of Neurochemistry | 2002
Vladimir A. Tyurin; Yulia Y. Tyurina; Grigory G. Borisenko; Tatiana V. Sokolova; Vladimir B. Ritov; Peter J. Quinn; Marie E. Rose; Patrick M. Kochanek; Steven H. Graham; Valerian E. Kagan
Abstract: Oxidative stress may contribute to many pathophysiologic changes that occur after traumatic brain injury. In the current study, contemporary methods of detecting oxidative stress were used in a rodent model of traumatic brain injury. The level of the stable product derived from peroxidation of arachidonyl residues in phospholipids, 8‐epi‐prostaglandin F2α, was increased at 6 and 24 h after traumatic brain injury. Furthermore, relative amounts of fluorescent end products of lipid peroxidation in brain extracts were increased at 6 and 24 h after trauma compared with sham‐operated controls. The total antioxidant reserves of brain homogenates and water‐soluble antioxidant reserves as well as tissue concentrations of ascorbate, GSH, and protein sulfhydryls were reduced after traumatic brain injury. A selective inhibitor of cyclooxygenase‐2, SC 58125, prevented depletion of ascorbate and thiols, the two major water‐soluble antioxidants in traumatized brain. Electron paramagnetic resonance (EPR) spectroscopy of rat cortex homogenates failed to detect any radical adducts with a spin trap, 5,5‐dimethyl‐1‐pyrroline N‐oxide, but did detect ascorbate radical signals. The ascorbate radical EPR signals increased in brain homogenates derived from traumatized brain samples compared with sham‐operated controls. These results along with detailed model experiments in vitro indicate that ascorbate is a major antioxidant in brain and that the EPR assay of ascorbate radicals may be used to monitor production of free radicals in brain tissue after traumatic brain injury.
American Journal of Physiology-endocrinology and Metabolism | 2010
Vladimir B. Ritov; Elizabeth V. Menshikova; Koichiro Azuma; Richard J Wood; Frederico G.S. Toledo; Bret H. Goodpaster; Neil B. Ruderman; David E. Kelley
Insulin resistance in skeletal muscle in obesity and T2DM is associated with reduced muscle oxidative capacity, reduced expression in nuclear genes responsible for oxidative metabolism, and reduced activity of mitochondrial electron transport chain. The presented study was undertaken to analyze mitochondrial content and mitochondrial enzyme profile in skeletal muscle of sedentary lean individuals and to compare that with our previous data on obese or obese T2DM group. Frozen skeletal muscle biopsies obtained from lean volunteers were used to estimate cardiolipin content, mtDNA (markers of mitochondrial mass), NADH oxidase activity of mitochondrial electron transport chain (ETC), and activity of citrate synthase and beta-hydroxyacyl-CoA dehydrogenase (beta-HAD), key enzymes of TCA cycle and beta-oxidation pathway, respectively. Frozen biopsies collected from obese or T2DM individuals in our previous studies were used to estimate activity of beta-HAD. The obtained data were complemented by data from our previous studies and statistically analyzed to compare mitochondrial content and mitochondrial enzyme profile in lean, obese, or T2DM cohort. The total activity of NADH oxidase was reduced significantly in obese or T2DM subjects. The cardiolipin content for lean or obese group was similar, and although for T2DM group cardiolipin showed a tendency to decline, it was statistically insignificant. The total activity of citrate synthase for lean and T2DM group was similar; however, it was increased significantly in the obese group. Activity of beta-HAD and mtDNA content was similar for all three groups. We conclude that the total activity of NADH oxidase in biopsy for lean group is significantly higher than corresponding activity for obese or T2DM cohort. The specific activity of NADH oxidase (per mg cardiolipin) and NADH oxidase/citrate synthase and NADH oxidase/beta-HAD ratios are reduced two- to threefold in both T2DM and obesity.
Diabetes | 2008
Frederico G.S. Toledo; Elizabeth V. Menshikova; Koichiro Azuma; Zofia Radiková; Carol Kelley; Vladimir B. Ritov; David E. Kelley
OBJECTIVE— In obesity and type 2 diabetes, exercise combined with weight loss increases skeletal muscle mitochondrial capacity. It remains unclear whether mitochondrial capacity increases because of weight loss, improvements in insulin resistance, or physical training. In this study, we examined the effects of an intervention of weight loss induced by diet and compared these with those of a similar intervention of weight loss by diet with exercise. Both are known to improve insulin resistance, and we tested the hypothesis that physical activity, rather than improved insulin resistance, is required to increase mitochondrial capacity of muscle. RESEARCH DESIGN AND METHODS— Sixteen sedentary overweight/obese volunteers were randomized to a 16-week intervention of diet (n = 7) or diet plus exercise (n = 9). Insulin sensitivity was measured using euglycemic clamps. Mitochondria were examined in muscle biopsies before and after intervention. We measured mitochondrial content and size by electron microscopy, electron transport chain (ETC) activity, cardiolipin content, and mitochondrial DNA content. Intramyocellular content of lipid (IMCL) and fiber-type distribution were determined by histology. RESULTS— The diet-only and diet plus exercise groups achieved similar weight loss (10.8 and 9.2%, respectively); only the diet plus exercise group improved aerobic capacity. Insulin sensitivity improved similarly in both groups. Mitochondrial content and ETC activity increased following the diet plus exercise intervention but remained unchanged following the diet-only intervention, and mitochondrial size decreased with weight loss despite improvement in insulin resistance. IMCL decreased in the diet-only but not in the diet plus exercise intervention. CONCLUSIONS— Despite similar effects to improve insulin resistance, these interventions had differential effects on mitochondria. Clinically significant weight loss in the absence of increased physical activity ameliorates insulin resistance and IMCL but does not increase muscle mitochondrial capacity in obesity.
Diabetes | 2006
Neil B. Ruderman; Charlotte Keller; Ann-Marie Richard; Asish K. Saha; Zhijun Luo; Xiaoqin Xiang; Mercedes Giralt; Vladimir B. Ritov; Elizabeth V. Menshikova; David E. Kelley; Juan Hidalgo; Bente Klarlund Pedersen; Meghan Kelly
Interleukin (IL)-6 is a pleiotropic hormone that has both proinflammatory and anti-inflammatory actions. AMP-activated protein kinase (AMPK) is a fuel-sensing enzyme that among its other actions responds to decreases in cellular energy state by enhancing processes that generate ATP and inhibiting others that consume ATP but are not acutely necessary for survival. IL-6 is synthesized and released from skeletal muscle in large amounts during exercise, and in rodents, the resultant increase in its concentration correlates temporally with increases in AMPK activity in multiple tissues. That IL-6 may be responsible in great measure for these increases in AMPK is suggested by the fact it increases AMPK activity both in muscle and adipose tissue in vivo and in incubated muscles and cultured adipocytes. In addition, we have found that AMPK activity is diminished in muscle and adipose tissue of 3-month-old IL-6 knockout (KO) mice at rest and that the absolute increases in AMPK activity in these tissues caused by exercise is diminished compared with control mice. Except for an impaired ability to exercise and to oxidize fatty acids, the IL-6 KO mouse appears normal at 3 months of age. On the other hand, by age 9 months, it manifests many of the abnormalities of the metabolic syndrome including obesity, dyslipidemia, and impaired glucose tolerance. This, plus the association of decreased AMPK activity with similar abnormalities in a number of other rodents, suggests that a decrease in AMPK activity may be a causal factor. Whether increases in IL-6, by virtue of their effects on AMPK, contribute to the reported ability of exercise to diminish the prevalence of type 2 diabetes, coronary heart disease, and other disorders associated with the metabolic syndrome remains to be determined.
Annals of Neurology | 2007
Hülya Bayır; Vladimir A. Tyurin; Yulia Y. Tyurina; Rosa Viner; Vladimir B. Ritov; Andrew A. Amoscato; Qing Zhao; Xiaojing Zhang; Keri Janesko-Feldman; Henry Alexander; Liana V. Basova; Robert S. B. Clark; Patrick M. Kochanek; Valerian E. Kagan
Enhanced lipid peroxidation is well established in traumatic brain injury. However, its molecular targets, identity of peroxidized phospholipid species, and their signaling role have not been deciphered.
Nature Chemical Biology | 2017
Valerian E. Kagan; Gaowei Mao; Feng Qu; José Pedro Friedmann Angeli; Sebastian Doll; Claudette M. St. Croix; Haider H. Dar; Bing Liu; Vladimir A. Tyurin; Vladimir B. Ritov; Alexandr A. Kapralov; Andrew A. Amoscato; Jianfei Jiang; Tamil S. Anthonymuthu; Dariush Mohammadyani; Qin Yang; Bettina Proneth; Judith Klein-Seetharaman; Simon Watkins; Ivet Bahar; Joel S. Greenberger; Rama K. Mallampalli; Brent R. Stockwell; Yulia Y. Tyurina; Marcus Conrad; Hülya Bayır
Enigmatic lipid peroxidation products have been claimed as the proximate executioners of ferroptosis-a specialized death program triggered by insufficiency of glutathione peroxidase 4 (GPX4). Using quantitative redox lipidomics, reverse genetics, bioinformatics and systems biology, we discovered that ferroptosis involves a highly organized oxygenation center, wherein oxidation in endoplasmic-reticulum-associated compartments occurs on only one class of phospholipids (phosphatidylethanolamines (PEs)) and is specific toward two fatty acyls-arachidonoyl (AA) and adrenoyl (AdA). Suppression of AA or AdA esterification into PE by genetic or pharmacological inhibition of acyl-CoA synthase 4 (ACSL4) acts as a specific antiferroptotic rescue pathway. Lipoxygenase (LOX) generates doubly and triply-oxygenated (15-hydroperoxy)-diacylated PE species, which act as death signals, and tocopherols and tocotrienols (vitamin E) suppress LOX and protect against ferroptosis, suggesting a homeostatic physiological role for vitamin E. This oxidative PE death pathway may also represent a target for drug discovery.
Diabetes | 2015
Paul M. Coen; Elizabeth V. Menshikova; Giovanna Distefano; Donghai Zheng; Charles J. Tanner; Robert A. Standley; Nicole L. Helbling; Gabriel S. Dubis; Vladimir B. Ritov; Hui Xie; Marisa E. Desimone; Steven R. Smith; Maja Stefanovic-Racic; Frederico G.S. Toledo; Joseph A. Houmard; Bret H. Goodpaster
Both Roux-en-Y gastric bypass (RYGB) surgery and exercise can improve insulin sensitivity in individuals with severe obesity. However, the impact of RYGB with or without exercise on skeletal muscle mitochondria, intramyocellular lipids, and insulin sensitivity index (SI) is unknown. We conducted a randomized exercise trial in patients (n = 101) who underwent RYGB surgery and completed either a 6-month moderate exercise (EX) or a health education control (CON) intervention. SI was determined by intravenous glucose tolerance test. Mitochondrial respiration and intramyocellular triglyceride, sphingolipid, and diacylglycerol content were measured in vastus lateralis biopsy specimens. We found that EX provided additional improvements in SI and that only EX improved cardiorespiratory fitness, mitochondrial respiration and enzyme activities, and cardiolipin profile with no change in mitochondrial content. Muscle triglycerides were reduced in type I fibers in CON, and sphingolipids decreased in both groups, with EX showing a further reduction in a number of ceramide species. In conclusion, exercise superimposed on bariatric surgery–induced weight loss enhances mitochondrial respiration, induces cardiolipin remodeling, reduces specific sphingolipids, and provides additional improvements in insulin sensitivity.
Obesity | 2013
Paul M. Coen; Kazanna C. Hames; E.M. Leachman; James P. DeLany; Vladimir B. Ritov; Elizaveta V. Menshikova; John J. Dubé; Maja Stefanovic-Racic; Frederico G.S. Toledo; Bret H. Goodpaster
The link between a reduced capacity for skeletal muscle mitochondrial fatty acid oxidation (FAO) and lipotoxicity in human insulin resistance has been the subject of intense debate. The objective of this study was to investigate whether reduced FAO is associated with elevated acyl CoA, ceramide, and diacylglycerol (DAG) in severely obese insulin resistant subjects.
Diabetes | 2013
Mitch T. Sitnick; Mahesh K. Basantani; Lingzhi Cai; Gabriele Schoiswohl; Cynthia F. Yazbeck; Giovanna Distefano; Vladimir B. Ritov; James P. DeLany; Renate Schreiber; Donna B. Stolz; Noah P. Gardner; Petra C. Kienesberger; Thomas Pulinilkunnil; Rudolf Zechner; Bret H. Goodpaster; Paul M. Coen; Erin E. Kershaw
Intramyocellular triacylglycerol (IMTG) accumulation is highly associated with insulin resistance and metabolic complications of obesity (lipotoxicity), whereas comparable IMTG accumulation in endurance-trained athletes is associated with insulin sensitivity (the athlete’s paradox). Despite these findings, it remains unclear whether changes in IMTG accumulation and metabolism per se influence muscle-specific and systemic metabolic homeostasis and insulin responsiveness. By mediating the rate-limiting step in triacylglycerol hydrolysis, adipose triglyceride lipase (ATGL) has been proposed to influence the storage/production of deleterious as well as essential lipid metabolites. However, the physiological relevance of ATGL-mediated triacylglycerol hydrolysis in skeletal muscle remains unknown. To determine the contribution of IMTG hydrolysis to tissue-specific and systemic metabolic phenotypes in the context of obesity, we generated mice with targeted deletion or transgenic overexpression of ATGL exclusively in skeletal muscle. Despite dramatic changes in IMTG content on both chow and high-fat diets, modulation of ATGL-mediated IMTG hydrolysis did not significantly influence systemic energy, lipid, or glucose homeostasis, nor did it influence insulin responsiveness or mitochondrial function. These data argue against a role for altered IMTG accumulation and lipolysis in muscle insulin resistance and metabolic complications of obesity.