Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vladimir Mayorov is active.

Publication


Featured researches published by Vladimir Mayorov.


Journal of Immunology | 2005

DNA Polymerase η Contributes to Strand Bias of Mutations of A versus T in Immunoglobulin Genes

Vladimir Mayorov; Igor B. Rogozin; Linda R. Adkison; Patricia J. Gearhart

DNA polymerase (pol) η participates in hypermutation of A:T bases in Ig genes because humans deficient for the polymerase have fewer substitutions of these bases. To determine whether polymerase η is also responsible for the well-known preference for mutations of A vs T on the nontranscribed strand, we sequenced variable regions from three patients with xeroderma pigmentosum variant (XP-V) disease, who lack polymerase η. The frequency of mutations in the intronic region downstream of rearranged JH4 gene segments was similar between XP-V and control clones; however, there were fewer mutations of A:T bases and correspondingly more substitutions of C:G bases in the XP-V clones (p < 10−7). There was significantly less of a bias for mutations of A compared with T nucleotides in the XP-V clones compared with control clones, whereas the frequencies for mutations of C and G were identical in both groups. An analysis of mutations in the WA sequence motif suggests that polymerase η generates more mutations of A than T on the nontranscribed strand. This in vivo data from polymerase η-deficient B cells correlates well with the in vitro specificity of the enzyme. Because polymerase η inserts more mutations opposite template T than template A, it would generate more substitutions of A on the newly synthesized strand.


BMC Immunology | 2005

Expression of human AID in yeast induces mutations in context similar to the context of somatic hypermutation at G-C pairs in immunoglobulin genes

Vladimir Mayorov; Igor B. Rogozin; Linda R. Adkison; Christin Frahm; Thomas A. Kunkel; Youri I. Pavlov

BackgroundAntibody genes are diversified by somatic hypermutation (SHM), gene conversion and class-switch recombination. All three processes are initiated by the activation-induced deaminase (AID). According to a DNA deamination model of SHM, AID converts cytosine to uracil in DNA sequences. The initial deamination of cytosine leads to mutation and recombination in pathways involving replication, DNA mismatch repair and possibly base excision repair. The DNA sequence context of mutation hotspots at G-C pairs during SHM is DGYW/WRCH (G-C is a hotspot position, R = A/G, Y = T/C, W = A/T, D = A/G/T).ResultsTo investigate the mechanisms of AID-induced mutagenesis in a model system, we studied the genetic consequences of AID expression in yeast. We constructed a yeast vector with an artificially synthesized human AID gene insert using codons common to highly expressed yeast genes. We found that expression of the artificial hAIDSc gene was moderately mutagenic in a wild-type strain and highly mutagenic in an ung1 uracil-DNA glycosylase-deficient strain. A majority of mutations were at G-C pairs. In the ung1 strain, C-G to T-A transitions were found almost exclusively, while a mixture of transitions with 12% transversions was characteristic in the wild-type strain. In the ung1 strain mutations that could have originated from deamination of the transcribed stand were found more frequently. In the wild-type strain, the strand bias was reversed. DGYW/WRCH motifs were preferential sites of mutations.ConclusionThe results are consistent with the hypothesis that AID-mediated deamination of DNA is a major cause of mutations at G-C base pairs in immunoglobulin genes during SHM. The sequence contexts of mutations in yeast induced by AID and those of somatic mutations at G-C pairs in immunoglobulin genes are significantly similar. This indicates that the intrinsic substrate specificity of AID itself is a primary determinant of mutational hotspots at G-C base pairs during SHM.


BMC Biochemistry | 2008

Mitochondrial oxidative phosphorylation in autosomal dominant optic atrophy

Vladimir Mayorov; Angela J. Lowrey; Valérie Biousse; Nancy J. Newman; Susan D. Cline; Michael D. Brown

BackgroundAutosomal dominant optic atrophy (ADOA), a form of progressive bilateral blindness due to loss of retinal ganglion cells and optic nerve deterioration, arises predominantly from mutations in the nuclear gene for the mitochondrial GTPase, OPA1. OPA1 localizes to mitochondrial cristae in the inner membrane where electron transport chain complexes are enriched. While OPA1 has been characterized for its role in mitochondrial cristae structure and organelle fusion, possible effects of OPA1 on mitochondrial function have not been determined.ResultsMitochondria from six ADOA patients bearing OPA1 mutations and ten ADOA patients with unidentified gene mutations were studied for respiratory capacity and electron transport complex function. Results suggest that the nuclear DNA mutations that give rise to ADOA in our patient population do not alter mitochondrial electron transport.ConclusionWe conclude that the pathophysiology of ADOA likely stems from the role of OPA1 in mitochondrial structure or fusion and not from OPA1 support of oxidative phosphorylation.


Annals of Neurology | 2005

The role of the ND5 gene in LHON: characterization of a new, heteroplasmic LHON mutation.

Vladimir Mayorov; Valérie Biousse; Nancy J. Newman; Michael D. Brown

Lebers hereditary optic neuropathy (LHON) causes central vision loss from bilateral optic neuropathy. Although 13 mitochondrial DNA (mtDNA) mutations are strongly associated with LHON, only three account for roughly 90% of cases and thus are found in multiple independent LHON families. The remaining LHON mutations are rare. Here, we describe the clinical and genetic characterization of a new LHON mtDNA mutation. The 12848T mutation alters a highly conserved amino acid in the ND5 complex I gene, is not found in controls, and is heteroplasmic. Despite ND5 being the largest of the mtDNA complex I genes, ND5 mutations are quite rare in LHON. Ann Neurol 2005;58:807–811


Molecular Biology and Evolution | 2012

Vertical evolution and horizontal transfer of CR1 non- LTR retrotransposons and Tc1/mariner DNA transposons in Lepidoptera species.

Irina Sormacheva; Georgiy Smyshlyaev; Vladimir Mayorov; Alexander Blinov; Anton Novikov; Olga Novikova

Horizontal transfer (HT) is a complex phenomenon usually used as an explanation of phylogenetic inconsistence, which cannot be interpreted in terms of vertical evolution. Most examples of HT of eukaryotic genes involve transposable elements. An intriguing feature of HT is that its frequency differs among transposable elements classes. Although HT is well known for DNA transposons and long terminal repeat (LTR) retrotransposons, non-LTR retrotransposons rarely undergo HT, and their phylogenies are largely congruent to those of their hosts. Previously, we described HT of CR1-like non-LTR retrotransposons between butterflies (Maculinea) and moths (Bombyx), which occurred less than 5 million years ago (Novikova O, Sliwinska E, Fet V, Settele J, Blinov A, Woyciechowski M. 2007. CR1 clade of non-LTR retrotransposons from Maculinea butterflies (Lepidoptera: Lycaenidae): evidence for recent horizontal transmission. BMC Evol Biol. 7:93). In this study, we continued to explore the diversity of CR1 non-LTR retrotransposons among lepidopterans providing additional evidences to support HT hypothesis. We also hypothesized that DNA transposons could be involved in HT of non-LTR retrotransposons. Thus, we performed analysis of one of the groups of DNA transposons, mariner-like DNA elements, as potential vectors for HT of non-LTR retrotransposons. Our results demonstrate multiple HTs between Maculinea and Bombyx genera. Although we did not find strong evidence for our hypothesis of the involvement of DNA transposons in HT of non-LTR retrotransposons, we demonstrated that recurrent and/or simultaneous flow of TEs took place between distantly related moths and butterflies.


Systematic Entomology | 2005

Molecular phylogeny of Palaearctic genera of Gomphocerinae grasshoppers (Orthoptera, Acrididae)

Alexander G. Bugrov; Olga Novikova; Vladimir Mayorov; Linda R. Adkison; Alexander Blinov

Abstract.  Molecular phylogenetic methods were used to examine morphologically based hypotheses concerning the taxonomic structure and relationships of the grasshopper subfamily Gomphocerinae. Two mitochondrial gene (cytochrome b and cytochrome oxidase subunit I) sequences were determined for twenty‐five species representing eleven Palaearctic genera. The studied Gomphocerinae species constituted a monophyletic group; furthermore, the earlier division of Gomphocerinae into tribes was supported, with each tribe monophyletic. There was no support for various systems uniting Stenobothrini and Gomphocerini into one tribe. Two separate clusters were discerned in Gomphocerini and two tribes were distinguished – Gomphocerini (genera Aeropus, Stauroderus, Chorthippus) and Stenobothrini (genera Omocestus, Stenobothrus).


Genetics in Medicine | 2006

OPA1 mutations and mitochondrial DNA haplotypes in autosomal dominant optic atrophy

Jian Han; Angela J Thompson-Lowrey; Alyson Reiss; Vladimir Mayorov; Haomiao Jia; Valérie Biousse; Nancy J. Newman; Michael D Brown

Purpose: Autosomal dominant optic atrophy is a form of blindness, due in part to mutations affecting the mitochondrial-targeted OPA1 gene product. Both OPA1-positive and OPA1-negative families exhibit variable expressivity and incomplete penetrance. The purpose of this study was therefore to determine if the background mtDNA genotype acts as a genetic modifier for the expression of this disease.Methods: To find novel pathogenic OPA1 mutations, we performed complete OPA1 gene exon sequencing in 30 patients. To assess the possibility that mitochondrial DNA haplotype acts as a genetic modifier, we determined the mitochondrial DNA haplotype in 29 Caucasian OPA1-positive and OPA1-negative patients. Deviations in haplotype distribution between patient and control groups were determined by statistical means.Results: Seven new pathogenic OPA1 mutations were found. Most were detected in the mitochondrial targeting N-terminus or in the coiled-coil domain at the C-terminus. Mitochondrial DNA haplotype analysis indicated that the European haplogroup distribution was different between Caucasian patients and controls. Further, haplogroup J was three-fold over-represented in OPA1-negative patients.Conclusions: Overall, our results support haploinsufficiency as a genetic mechanism in OPA1-positive cases and also suggest that mtDNA genetic background may influence disease expression in a subset of cases.


Mammalian Genome | 1999

Characterization of several LINE-1 elements in Microtus kirgisorum

Vladimir Mayorov; Igor B. Rogozin; Linda R. Adkison

Abstract. Several LINE-1s have been isolated and characterized from genomic DNA of the vole, Microtus kirgisorum. Blot hybridization revealed specific restriction patterns of L1 elements in vole genomes. Rehybridization of the genomic blot with a cloned 5′-end fragment revealed two major bands indicating the presence of two different L1 subfamilies. The copy numbers are estimated for different parts of M. kirgisorum L1 elements. Data also demonstrate that most vole L1 elements are truncated at the 5′-end; however, in contrast to mouse, the ORF1 copy number is higher in vole. A difference between the substitution rates of the ORF1 5′-region (approximately 330 nucleotides) and the rest of the L1 coding regions is revealed.


Plant Journal | 2008

Novel clades of chromodomain-containing Gypsy LTR retrotransposons from mosses (Bryophyta).

Olga Novikova; Vladimir Mayorov; Georgiy Smyshlyaev; Michail Fursov; Linda R. Adkison; Olga Pisarenko; Alexander Blinov

Retrotransposons are the major component of plant genomes. Chromodomain-containing Gypsy long terminal repeat (LTR) retrotransposons are widely distributed in eukaryotes. Four distinct clades of chromodomain-containing Gypsy retroelements are known from the vascular plants: Reina, CRM, Galadriel and Tekay. At the same time, almost nothing is known about the repertoire of LTR retrotransposons in bryophyte genomes. We have combined a search of chromodomain-containing Gypsy retroelements in Physcomitrella genomic sequences and an experimental investigation of diverse moss species. The computer-based mining of the chromodomain-containing LTR retrotransposons allowed us to describe four different elements from Physcomitrella. Four novel clades were identified that are evolutionarily distinct from the chromodomain-containing Gypsy LTR retrotransposons of other plants.


Cancer Biology & Therapy | 2014

Identification of cancer stem cells and a strategy for their elimination

Evgenia V. Dolgova; Ekaterina A Alyamkina; Yaroslav R. Efremov; Valeriy P. Nikolin; N. A. Popova; T. V. Tyrinova; Artem V Kozel; Alexandra M. Minkevich; Oleg M Andrushkevich; Evgeniy L. Zavyalov; Alexander V. Romaschenko; Sergey I. Bayborodin; Oleg S. Taranov; Vladimir V. Omigov; Ekaterina Ya Shevela; V. V. Stupak; S. V. Mishinov; Vladimir A. Rogachev; Anastasia S. Proskurina; Vladimir Mayorov; Mikhail A. Shurdov; Alexander A Ostanin; E. R. Chernykh; Sergey S. Bogachev

It has been established previously that up to 40% of mouse CD34+ hematopoietic stem cells are capable of internalizing exogenous dsDNA fragments both in vivo and ex vivo. Importantly, when mice are treated with a combination of cyclophosphamide and dsDNA, the repair of interstrand crosslinks in hematopoietic progenitors is attenuated, and their pluripotency is altered. Here we show for the first time that among various actively proliferating mammalian cell populations there are subpopulations capable of internalizing dsDNA fragments. In the context of cancer, such dsDNA-internalizing cell subpopulations display cancer stem cell-like phenotype. Furthermore, using Krebs-2 ascites cells as a model, we found that upon combined treatment with cyclophosphamide and dsDNA, engrafted material loses its tumor-initiating properties which we attribute to the elimination of tumor-initiating stem cell subpopulation or loss of its tumorigenic potential.

Collaboration


Dive into the Vladimir Mayorov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Igor B. Rogozin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sergey Dikalov

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Alexander Blinov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Georgiy Smyshlyaev

Novosibirsk State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge