Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vyacheslav Amstislavskiy is active.

Publication


Featured researches published by Vyacheslav Amstislavskiy.


Nature | 2013

Transcriptome and genome sequencing uncovers functional variation in humans.

Tuuli Lappalainen; Michael Sammeth; Marc R. Friedländer; Peter A. C. 't Hoen; Jean Monlong; Manuel A. Rivas; Mar Gonzàlez-Porta; Natalja Kurbatova; Thasso Griebel; Pedro G. Ferreira; Matthias Barann; Thomas Wieland; Liliana Greger; M. van Iterson; Jonas Carlsson Almlöf; Paolo Ribeca; Irina Pulyakhina; Daniela Esser; Thomas Giger; Andrew Tikhonov; Marc Sultan; G. Bertier; Daniel G. MacArthur; Monkol Lek; Esther Lizano; Henk P. J. Buermans; Ismael Padioleau; Thomas Schwarzmayr; Olof Karlberg; Halit Ongen

Genome sequencing projects are discovering millions of genetic variants in humans, and interpretation of their functional effects is essential for understanding the genetic basis of variation in human traits. Here we report sequencing and deep analysis of messenger RNA and microRNA from lymphoblastoid cell lines of 462 individuals from the 1000 Genomes Project—the first uniformly processed high-throughput RNA-sequencing data from multiple human populations with high-quality genome sequences. We discover extremely widespread genetic variation affecting the regulation of most genes, with transcript structure and expression level variation being equally common but genetically largely independent. Our characterization of causal regulatory variation sheds light on the cellular mechanisms of regulatory and loss-of-function variation, and allows us to infer putative causal variants for dozens of disease-associated loci. Altogether, this study provides a deep understanding of the cellular mechanisms of transcriptome variation and of the landscape of functional variants in the human genome.


Nature | 2012

Dissecting the genomic complexity underlying medulloblastoma

David T. W. Jones; Natalie Jäger; Marcel Kool; Thomas Zichner; Barbara Hutter; Marc Sultan; Yoon-Jae Cho; Trevor J. Pugh; Volker Hovestadt; Adrian M. Stütz; Tobias Rausch; Hans-Jörg Warnatz; Marina Ryzhova; Sebastian Bender; Dominik Sturm; Sabrina Pleier; Huriye Cin; Elke Pfaff; Laura Sieber; Andrea Wittmann; Marc Remke; Hendrik Witt; Sonja Hutter; Theophilos Tzaridis; Joachim Weischenfeldt; Benjamin Raeder; Meryem Avci; Vyacheslav Amstislavskiy; Marc Zapatka; Ursula Weber

Medulloblastoma is an aggressively growing tumour, arising in the cerebellum or medulla/brain stem. It is the most common malignant brain tumour in children, and shows tremendous biological and clinical heterogeneity. Despite recent treatment advances, approximately 40% of children experience tumour recurrence, and 30% will die from their disease. Those who survive often have a significantly reduced quality of life. Four tumour subgroups with distinct clinical, biological and genetic profiles are currently identified. WNT tumours, showing activated wingless pathway signalling, carry a favourable prognosis under current treatment regimens. SHH tumours show hedgehog pathway activation, and have an intermediate prognosis. Group 3 and 4 tumours are molecularly less well characterized, and also present the greatest clinical challenges. The full repertoire of genetic events driving this distinction, however, remains unclear. Here we describe an integrative deep-sequencing analysis of 125 tumour–normal pairs, conducted as part of the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. Tetraploidy was identified as a frequent early event in Group 3 and 4 tumours, and a positive correlation between patient age and mutation rate was observed. Several recurrent mutations were identified, both in known medulloblastoma-related genes (CTNNB1, PTCH1, MLL2, SMARCA4) and in genes not previously linked to this tumour (DDX3X, CTDNEP1, KDM6A, TBR1), often in subgroup-specific patterns. RNA sequencing confirmed these alterations, and revealed the expression of what are, to our knowledge, the first medulloblastoma fusion genes identified. Chromatin modifiers were frequently altered across all subgroups. These findings enhance our understanding of the genomic complexity and heterogeneity underlying medulloblastoma, and provide several potential targets for new therapeutics, especially for Group 3 and 4 patients.


Nucleic Acids Research | 2009

Transcriptome analysis by strand-specific sequencing of complementary DNA

Dmitri Parkhomchuk; Tatiana Borodina; Vyacheslav Amstislavskiy; Maria Banaru; Linda Hallen; Sylvia Krobitsch; Hans Lehrach; Alexey Soldatov

High-throughput complementary DNA sequencing (RNA-Seq) is a powerful tool for whole-transcriptome analysis, supplying information about a transcripts expression level and structure. However, it is difficult to determine the polarity of transcripts, and therefore identify which strand is transcribed. Here, we present a simple cDNA sequencing protocol that preserves information about a transcripts direction. Using Saccharomyces cerevisiae and mouse brain transcriptomes as models, we demonstrate that knowing the transcripts orientation allows more accurate determination of the structure and expression of genes. It also helps to identify new genes and enables studying promoter-associated and antisense transcription. The transcriptional landscapes we obtained are available online.


Nature | 2016

Active medulloblastoma enhancers reveal subgroup-specific cellular origins

Charles Y. Lin; Serap Erkek; Yiai Tong; Linlin Yin; Alexander J. Federation; Marc Zapatka; Parthiv Haldipur; Daisuke Kawauchi; Thomas Risch; Hans Jörg Warnatz; Barbara C. Worst; Bensheng Ju; Brent A. Orr; Rhamy Zeid; Donald R. Polaski; Maia Segura-Wang; Sebastian M. Waszak; David T. W. Jones; Marcel Kool; Volker Hovestadt; Ivo Buchhalter; Laura Sieber; Pascal Johann; Lukas Chavez; Stefan Gröschel; Marina Ryzhova; Andrey Korshunov; Wenbiao Chen; Victor V. Chizhikov; Kathleen J. Millen

Medulloblastoma is a highly malignant paediatric brain tumour, often inflicting devastating consequences on the developing child. Genomic studies have revealed four distinct molecular subgroups with divergent biology and clinical behaviour. An understanding of the regulatory circuitry governing the transcriptional landscapes of medulloblastoma subgroups, and how this relates to their respective developmental origins, is lacking. Here, using H3K27ac and BRD4 chromatin immunoprecipitation followed by sequencing (ChIP-seq) coupled with tissue-matched DNA methylation and transcriptome data, we describe the active cis-regulatory landscape across 28 primary medulloblastoma specimens. Analysis of differentially regulated enhancers and super-enhancers reinforced inter-subgroup heterogeneity and revealed novel, clinically relevant insights into medulloblastoma biology. Computational reconstruction of core regulatory circuitry identified a master set of transcription factors, validated by ChIP-seq, that is responsible for subgroup divergence, and implicates candidate cells of origin for Group 4. Our integrated analysis of enhancer elements in a large series of primary tumour samples reveals insights into cis-regulatory architecture, unrecognized dependencies, and cellular origins.


Cell | 2016

Genetic Drivers of Epigenetic and Transcriptional Variation in Human Immune Cells

Lu Chen; Bing Ge; Francesco Paolo Casale; Louella Vasquez; Tony Kwan; Diego Garrido-Martín; Stephen Watt; Ying Yan; Kousik Kundu; Simone Ecker; Avik Datta; David C. Richardson; Frances Burden; Daniel Mead; Alice L. Mann; José María Fernández; Sophia Rowlston; Steven P. Wilder; Samantha Farrow; Xiaojian Shao; John J. Lambourne; Adriana Redensek; Cornelis A. Albers; Vyacheslav Amstislavskiy; Sofie Ashford; Kim Berentsen; Lorenzo Bomba; Guillaume Bourque; David Bujold; Stephan Busche

Summary Characterizing the multifaceted contribution of genetic and epigenetic factors to disease phenotypes is a major challenge in human genetics and medicine. We carried out high-resolution genetic, epigenetic, and transcriptomic profiling in three major human immune cell types (CD14+ monocytes, CD16+ neutrophils, and naive CD4+ T cells) from up to 197 individuals. We assess, quantitatively, the relative contribution of cis-genetic and epigenetic factors to transcription and evaluate their impact as potential sources of confounding in epigenome-wide association studies. Further, we characterize highly coordinated genetic effects on gene expression, methylation, and histone variation through quantitative trait locus (QTL) mapping and allele-specific (AS) analyses. Finally, we demonstrate colocalization of molecular trait QTLs at 345 unique immune disease loci. This expansive, high-resolution atlas of multi-omics changes yields insights into cell-type-specific correlation between diverse genomic inputs, more generalizable correlations between these inputs, and defines molecular events that may underpin complex disease risk.


Nature | 2017

The whole-genome landscape of medulloblastoma subtypes

Paul A. Northcott; Ivo Buchhalter; A. Sorana Morrissy; Volker Hovestadt; Joachim Weischenfeldt; Tobias Ehrenberger; Susanne Gröbner; Maia Segura-Wang; Thomas Zichner; Vasilisa A. Rudneva; Hans-Jörg Warnatz; Nikos Sidiropoulos; Aaron H. Phillips; Steven E. Schumacher; Kortine Kleinheinz; Sebastian M. Waszak; Serap Erkek; David Jones; Barbara C. Worst; Marcel Kool; Marc Zapatka; Natalie Jäger; Lukas Chavez; Barbara Hutter; Matthias Bieg; Nagarajan Paramasivam; Michael Heinold; Zuguang Gu; Naveed Ishaque; Christina Jäger-Schmidt

Current therapies for medulloblastoma, a highly malignant childhood brain tumour, impose debilitating effects on the developing child, and highlight the need for molecularly targeted treatments with reduced toxicity. Previous studies have been unable to identify the full spectrum of driver genes and molecular processes that operate in medulloblastoma subgroups. Here we analyse the somatic landscape across 491 sequenced medulloblastoma samples and the molecular heterogeneity among 1,256 epigenetically analysed cases, and identify subgroup-specific driver alterations that include previously undiscovered actionable targets. Driver mutations were confidently assigned to most patients belonging to Group 3 and Group 4 medulloblastoma subgroups, greatly enhancing previous knowledge. New molecular subtypes were differentially enriched for specific driver events, including hotspot in-frame insertions that target KBTBD4 and ‘enhancer hijacking’ events that activate PRDM6. Thus, the application of integrative genomics to an extensive cohort of clinical samples derived from a single childhood cancer entity revealed a series of cancer genes and biologically relevant subtype diversity that represent attractive therapeutic targets for the treatment of patients with medulloblastoma.


BMC Genomics | 2014

Influence of RNA extraction methods and library selection schemes on RNA-seq data

Marc Sultan; Vyacheslav Amstislavskiy; Thomas Risch; Moritz Schuette; Simon Dökel; Meryem Ralser; Daniela Balzereit; Hans Lehrach; Marie-Laure Yaspo

BackgroundGene expression analysis by RNA sequencing is now widely used in a number of applications surveying the whole transcriptomes of cells and tissues. The recent introduction of ribosomal RNA depletion protocols, such as RiboZero, has extended the view of the polyadenylated transcriptome to the poly(A)- fraction of the RNA. However, substantial amounts of intronic transcriptional activity has been reported in RiboZero protocols, raising issues regarding their potential nuclear origin and the impact on the actual sequence depth in exonic regions.ResultsUsing HEK293 human cells as source material, we assessed here the impact of the two commonly used RNA extraction methods and of the library construction protocols (rRNA depletion versus mRNA) on 1) the relative abundance of intronic reads and 2) on the estimation of gene expression values. We benchmarked the rRNA depletion-based sequencing with a specific analysis of the cytoplasmic and nuclear transcriptome fractions, suggesting that the large majority of the intronic reads correspond to unprocessed nuclear transcripts rather than to independent transcriptional units. We show that Qiagen or TRIzol extraction methods retain differentially nuclear RNA species, and that consequently, rRNA depletion-based RNA sequencing protocols are particularly sensitive to the extraction methods.ConclusionsWe could show that the combination of Trizol-based RNA extraction with rRNA depletion sequencing protocols led to the largest fraction of intronic reads, after the sequencing of the nuclear transcriptome. We discuss here the impact of the various strategies on gene expression and alternative splicing estimation measures. Further, we propose guidelines and a double selection strategy for minimizing the expression biases, without loss of information.


Biochemical and Biophysical Research Communications | 2012

A simple strand-specific RNA-Seq library preparation protocol combining the Illumina TruSeq RNA and the dUTP methods

Marc Sultan; Simon Dökel; Vyacheslav Amstislavskiy; Daniela Wuttig; Holger Sültmann; Hans Lehrach; Marie-Laure Yaspo

Preserving the original RNA orientation information in RNA-Sequencing (RNA-Seq) experiment is essential to the analysis and understanding of the complexity of mammalian transcriptomes. We describe herein a simple, robust, and time-effective protocol for generating strand-specific RNA-seq libraries suited for the Illumina sequencing platform. We modified the Illumina TruSeq RNA sample preparation by implementing the strand specificity feature using the dUTP method. This protocol uses low amounts of starting material and allows a fast processing within two days. It can be easily implemented and requires only few additional reagents to the original Illumina kit.


Nature Communications | 2017

Molecular dissection of colorectal cancer in pre-clinical models identifies biomarkers predicting sensitivity to EGFR inhibitors

Moritz Schütte; Thomas Risch; Nilofar Abdavi-Azar; Karsten Boehnke; Dirk Schumacher; Marlen Keil; Reha Yildiriman; Christine Jandrasits; Tatiana Borodina; Vyacheslav Amstislavskiy; Catherine L Worth; Caroline Schweiger; Sandra Liebs; Martin Lange; Hans Jörg Warnatz; Lee M. Butcher; James E. Barrett; Marc Sultan; Christoph Wierling; Nicole Golob-Schwarzl; Sigurd Lax; Stefan Uranitsch; Michael Becker; Yvonne Welte; Joseph L. Regan; Maxine Silvestrov; Inge Kehler; Alberto Fusi; Thomas Kessler; Ralf Herwig

Colorectal carcinoma represents a heterogeneous entity, with only a fraction of the tumours responding to available therapies, requiring a better molecular understanding of the disease in precision oncology. To address this challenge, the OncoTrack consortium recruited 106 CRC patients (stages I–IV) and developed a pre-clinical platform generating a compendium of drug sensitivity data totalling >4,000 assays testing 16 clinical drugs on patient-derived in vivo and in vitro models. This large biobank of 106 tumours, 35 organoids and 59 xenografts, with extensive omics data comparing donor tumours and derived models provides a resource for advancing our understanding of CRC. Models recapitulate many of the genetic and transcriptomic features of the donors, but defined less complex molecular sub-groups because of the loss of human stroma. Linking molecular profiles with drug sensitivity patterns identifies novel biomarkers, including a signature outperforming RAS/RAF mutations in predicting sensitivity to the EGFR inhibitor cetuximab.


Nature Genetics | 2015

Genomics and drug profiling of fatal TCF3-HLF-positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options

Ute Fischer; Michael Forster; Anna Rinaldi; Thomas Risch; Stephanie Sungalee; Hans-Jörg Warnatz; Beat C. Bornhauser; Michael Gombert; Christina Kratsch; Adrian M. Stütz; Marc Sultan; Joelle Tchinda; Catherine L Worth; Vyacheslav Amstislavskiy; Nandini Badarinarayan; André Baruchel; Thies Bartram; Giuseppe Basso; Cengiz Canpolat; Gunnar Cario; Hélène Cavé; Dardane Dakaj; Mauro Delorenzi; Maria Pamela Dobay; Cornelia Eckert; Eva Ellinghaus; Sabrina Eugster; Viktoras Frismantas; Sebastian Ginzel; Oskar A. Haas

TCF3-HLF−positive acute lymphoblastic leukemia (ALL) is currently incurable. Using an integrated approach, we uncovered distinct mutation, gene expression and drug response profiles in TCF3-HLF−positive and treatment-responsive TCF3-PBX1−positive ALL. We identified recurrent intragenic deletions of PAX5 or VPREB1 in constellation with the fusion of TCF3 and HLF. Moreover somatic mutations in the non-translocated allele of TCF3 and a reduction of PAX5 gene dosage in TCF3-HLF ALL suggest cooperation within a restricted genetic context. The enrichment for stem cell and myeloid features in the TCF3-HLF signature may reflect reprogramming by TCF3-HLF of a lymphoid-committed cell of origin toward a hybrid, drug-resistant hematopoietic state. Drug response profiling of matched patient-derived xenografts revealed a distinct profile for TCF3-HLF ALL with resistance to conventional chemotherapeutics but sensitivity to glucocorticoids, anthracyclines and agents in clinical development. Striking on-target sensitivity was achieved with the BCL2-specific inhibitor venetoclax (ABT-199). This integrated approach thus provides alternative treatment options for this deadly disease.

Collaboration


Dive into the Vyacheslav Amstislavskiy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barbara Hutter

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Zapatka

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Marcel Kool

German Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge