Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Walburga Engel-Riedel is active.

Publication


Featured researches published by Walburga Engel-Riedel.


Cell | 2012

Mapping the Hallmarks of Lung Adenocarcinoma with Massively Parallel Sequencing

Marcin Imielinski; Alice H. Berger; Peter S. Hammerman; Bryan Hernandez; Trevor J. Pugh; Eran Hodis; Jeonghee Cho; James Suh; Marzia Capelletti; Andrey Sivachenko; Carrie Sougnez; Daniel Auclair; Michael S. Lawrence; Petar Stojanov; Kristian Cibulskis; Kyusam Choi; Luc de Waal; Tanaz Sharifnia; Angela N. Brooks; Heidi Greulich; Shantanu Banerji; Thomas Zander; Danila Seidel; Frauke Leenders; Sascha Ansén; Corinna Ludwig; Walburga Engel-Riedel; Erich Stoelben; Jürgen Wolf; Chandra Goparju

Lung adenocarcinoma, the most common subtype of non-small cell lung cancer, is responsible for more than 500,000 deaths per year worldwide. Here, we report exome and genome sequences of 183 lung adenocarcinoma tumor/normal DNA pairs. These analyses revealed a mean exonic somatic mutation rate of 12.0 events/megabase and identified the majority of genes previously reported as significantly mutated in lung adenocarcinoma. In addition, we identified statistically recurrent somatic mutations in the splicing factor gene U2AF1 and truncating mutations affecting RBM10 and ARID1A. Analysis of nucleotide context-specific mutation signatures grouped the sample set into distinct clusters that correlated with smoking history and alterations of reported lung adenocarcinoma genes. Whole-genome sequence analysis revealed frequent structural rearrangements, including in-frame exonic alterations within EGFR and SIK2 kinases. The candidate genes identified in this study are attractive targets for biological characterization and therapeutic targeting of lung adenocarcinoma.


Science Translational Medicine | 2010

Frequent and Focal FGFR1 Amplification Associates with Therapeutically Tractable FGFR1 Dependency in Squamous Cell Lung Cancer

Jonathan M. Weiss; Martin L. Sos; Danila Seidel; Martin Peifer; Thomas Zander; Johannes M. Heuckmann; Roland T. Ullrich; Roopika Menon; Sebastian Maier; Alex Soltermann; Holger Moch; Patrick Wagener; Florian Fischer; Stefanie Heynck; Mirjam Koker; Jakob Schöttle; Frauke Leenders; Franziska Gabler; Ines Dabow; Silvia Querings; Lukas C. Heukamp; Hyatt Balke-Want; Sascha Ansén; Daniel Rauh; Ingelore Baessmann; Janine Altmüller; Zoe Wainer; Matthew Conron; Gavin Wright; Prudence A. Russell

FGFR1 amplification provides a therapeutic target for squamous cell lung cancer, which is resistant to other targeted lung cancer drugs. A Smoking Gun for Lung Cancer Detectives and scientists alike need strong evidence to take their cases to the judge, who for scientists is often a patient with a deadly disease. Yet, new culprits are sometimes found that can break a case wide open. Lung cancer, which accounts for more than 10% of the global cancer burden, has a poor prognosis and inadequately responds to chemotherapy and radiotherapy. New targeted treatments for lung adenocarcinomas inhibit the oncogenic versions of signaling protein kinases that arise from mutations typically found in lung cancer patients who have never smoked. However, smokers frequently suffer from a different deviant, squamous cell lung cancers, for which there are no known molecular genetic targets for therapy. Now, Weiss et al. have fingered a new suspect in smoking-related lung cancer: amplification of the FGFR1 gene, which encodes the fibroblast growth factor receptor 1 tyrosine kinase (FGFR1). To identify therapeutically viable genetic alterations that may influence squamous cell lung cancer, Weiss et al. performed genomic profiles on a large set of lung cancer specimens. Squamous cell lung cancer samples showed FGFR1 amplification, which was not found in other lung cancer subtypes. The authors then determined that a molecule that broadly inhibits FGF receptor function could block tumor growth and cause cell death in the cancers that expressed high amounts of the FGFR1 gene product in a manner that was dependent on FGFR1 expression. Moreover, FGFR1 inhibition resulted in a considerable decrease in tumor size in a mouse model of FGFR1-amplified lung cancer. This culmination of evidence implies that inhibition of this receptor tyrosine kinase should be explored as a candidate therapy for corralling squamous cell lung cancer in smokers. Lung cancer remains one of the leading causes of cancer-related death in developed countries. Although lung adenocarcinomas with EGFR mutations or EML4-ALK fusions respond to treatment by epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) inhibition, respectively, squamous cell lung cancer currently lacks therapeutically exploitable genetic alterations. We conducted a systematic search in a set of 232 lung cancer specimens for genetic alterations that were therapeutically amenable and then performed high-resolution gene copy number analyses. We identified frequent and focal fibroblast growth factor receptor 1 (FGFR1) amplification in squamous cell lung cancer (n = 155), but not in other lung cancer subtypes, and, by fluorescence in situ hybridization, confirmed the presence of FGFR1 amplifications in an independent cohort of squamous cell lung cancer samples (22% of cases). Using cell-based screening with the FGFR inhibitor PD173074 in a large (n = 83) panel of lung cancer cell lines, we demonstrated that this compound inhibited growth and induced apoptosis specifically in those lung cancer cells carrying amplified FGFR1. We validated the FGFR1 dependence of FGFR1-amplified cell lines by FGFR1 knockdown and by ectopic expression of an FGFR1-resistant allele (FGFR1V561M), which rescued FGFR1-amplified cells from PD173074-mediated cytotoxicity. Finally, we showed that inhibition of FGFR1 with a small molecule led to significant tumor shrinkage in vivo. Thus, focal FGFR1 amplification is common in squamous cell lung cancer and associated with tumor growth and survival, suggesting that FGFR inhibitors may be a viable therapeutic option in this cohort of patients.


Nature Genetics | 2012

Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer

Martin Peifer; Lynnette Fernandez-Cuesta; Martin L. Sos; Julie George; Danila Seidel; Lawryn H. Kasper; Dennis Plenker; Frauke Leenders; Ruping Sun; Thomas Zander; Roopika Menon; Mirjam Koker; Ilona Dahmen; Christian Müller; Vincenzo Di Cerbo; Hans Ulrich Schildhaus; Janine Altmüller; Ingelore Baessmann; Christian Becker; Bram De Wilde; Jo Vandesompele; Diana Böhm; Sascha Ansén; Franziska Gabler; Ines Wilkening; Stefanie Heynck; Johannes M. Heuckmann; Xin Lu; Scott L. Carter; Kristian Cibulskis

Small-cell lung cancer (SCLC) is an aggressive lung tumor subtype with poor prognosis. We sequenced 29 SCLC exomes, 2 genomes and 15 transcriptomes and found an extremely high mutation rate of 7.4 ± 1 protein-changing mutations per million base pairs. Therefore, we conducted integrated analyses of the various data sets to identify pathogenetically relevant mutated genes. In all cases, we found evidence for inactivation of TP53 and RB1 and identified recurrent mutations in the CREBBP, EP300 and MLL genes that encode histone modifiers. Furthermore, we observed mutations in PTEN, SLIT2 and EPHA7, as well as focal amplifications of the FGFR1 tyrosine kinase gene. Finally, we detected many of the alterations found in humans in SCLC tumors from Tp53 and Rb1 double knockout mice. Our study implicates histone modification as a major feature of SCLC, reveals potentially therapeutically tractable genomic alterations and provides a generalizable framework for the identification of biologically relevant genes in the context of high mutational background.


PLOS ONE | 2011

Benchmarking of Mutation Diagnostics in Clinical Lung Cancer Specimens

Silvia Querings; Janine Altmüller; Sascha Ansén; Thomas Zander; Danila Seidel; Franziska Gabler; Martin Peifer; Eva Markert; Kathryn Stemshorn; Bernd Timmermann; Beate Saal; Stefan M. Klose; Karen Ernestus; Matthias Scheffler; Walburga Engel-Riedel; Erich Stoelben; Elisabeth Brambilla; Juergen Wolf; Peter Nürnberg; Roman K. Thomas

Treatment of EGFR-mutant non-small cell lung cancer patients with the tyrosine kinase inhibitors erlotinib or gefitinib results in high response rates and prolonged progression-free survival. Despite the development of sensitive mutation detection approaches, a thorough validation of these in a clinical setting has so far been lacking. We performed, in a clinical setting, a systematic validation of dideoxy ‘Sanger’ sequencing and pyrosequencing against massively parallel sequencing as one of the most sensitive mutation detection technologies available. Mutational annotation of clinical lung tumor samples revealed that of all patients with a confirmed response to EGFR inhibition, only massively parallel sequencing detected all relevant mutations. By contrast, dideoxy sequencing missed four responders and pyrosequencing missed two responders, indicating a dramatic lack of sensitivity of dideoxy sequencing, which is widely applied for this purpose. Furthermore, precise quantification of mutant alleles revealed a low correlation (r2 = 0.27) of histopathological estimates of tumor content and frequency of mutant alleles, thereby questioning the use of histopathology for stratification of specimens for individual analytical procedures. Our results suggest that enhanced analytical sensitivity is critically required to correctly identify patients responding to EGFR inhibition. More broadly, our results emphasize the need for thorough evaluation of all mutation detection approaches against massively parallel sequencing as a prerequisite for any clinical implementation.


Radiation Oncology | 2006

Stereotactic, single-dose irradiation of stage I non-small cell lung cancer and lung metastases.

Peter Fritz; Hans-Jörg Kraus; Werner Mühlnickel; Udo Hammer; Wolfram Dölken; Walburga Engel-Riedel; Assad Chemaissani; Erich Stoelben

BackgroundWe prospectively reviewed response rates, local control, and side effects after non-fractionated stereotactic high single-dose body radiation therapy for lung tumors.MethodsFifty-eight patients underwent radiosurgery involving single-dose irradiation. With 25 patients, 31 metastases in the lungs were irradiated; with each of 33 patients, stage I non-small cell lung cancer (NSCLC) was subject to irradiation. The standard dose prescribed to the isocenter was 30 Gy with an axial safety margin of 10 mm and a longitudinal safety margin of 15 mm. The planning target volume (PTV) was defined using three CT scans with reference to the phases of respiration so that the movement span of the clinical target volume (CTV) was enclosed.ResultsThe volume of the metastases (CTV) varied from 2.8 to 55.8 cm3 (median: 6.0 cm3) and the PTV varied from 12.2 to 184.0 cm3 (median: 45.0 cm3). The metastases ranged from 0.7 to 4.5 cm in largest diameter. The volume of the bronchial carcinomas varied from 4.2 to 125.4 cm3(median: 17.5 cm3) and the PTV from 15.6 to 387.3 cm3 (median: 99.8 cm3). The bronchial carcinomas ranged from 1.7 to 10 cm in largest diameter. Follow-up periods varied from 6.8 to 63 months (median: 22 months for metastases and 18 months for NSCLC). Local control was achieved with 94% of NSCLC and 87% of metastases. No serious symptomatic side effects were observed. According to the Kaplan-Meier method the overall survival probability rates of patients with lung metastases were as follows: 1 year: 97%, 2 years: 73%, 3 years: 42%, 4 years: 42%, 5 years: 42% (median survival: 26 months); of those with NSCLC: 1 year: 83%, 2 years: 63%, 3 years: 53%, 4 years: 39%: (median survival: 20.4 months).ConclusionNon-fractionated single-dose irradiation of metastases in the lungs or of small, peripheral bronchial carcinomas is an effective and safe form of local treatment and might become a viable alternative to invasive techniques.


Modern Pathology | 2012

Definition of a fluorescence in-situ hybridization score identifies high- and low-level FGFR1 amplification types in squamous cell lung cancer

Hans-Ulrich Schildhaus; Lukas C. Heukamp; Sabine Merkelbach-Bruse; Katharina Riesner; Katja Schmitz; Elke Binot; Ellen Paggen; Kerstin Albus; Wolfgang Schulte; Yon-Dschun Ko; Andreas Schlesinger; Sascha Ansén; Walburga Engel-Riedel; Michael Brockmann; Monika Serke; Ulrich Gerigk; Sebastian Huss; Friederike Göke; Sven Perner; Khosro Hekmat; Konrad Frank; Marcel Reiser; Roland Schnell; Marc Bos; Christian Mattonet; Martin L. Sos; Erich Stoelben; Jürgen Wolf; Thomas Zander; Reinhard Buettner

We recently reported fibroblast growth factor receptor-type 1 (FGFR1) amplification to be associated with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. This makes FGFR1 a novel target for directed therapy in these tumors. To reproducibly identify patients for clinical studies, we developed a standardized reading and evaluation strategy for FGFR1 fluorescence in-situ hybridization (FISH) and propose evaluation criteria, describe different patterns of low- and high-level amplifications and report on the prevalence of FGFR1 amplifications in pulmonary carcinomas. A total of 420 lung cancer patients including 307 squamous carcinomas, 100 adenocarcinomas of the lung and 13 carcinomas of other types were analyzed for FGFR1 amplification using a dual color FISH. We found heterogeneous and different patterns of gene copy numbers. FGFR1 amplifications were observed in 20% of pulmonary squamous carcinomas but not in adenocarcinomas. High-level amplification (as defined by an FGFR1/centromer 8 (CEN8) ratio ≥2.0, or average number of FGFR1 signals per tumor cell nucleus ≥6, or the percentage of tumor cells containing ≥15 FGFR1 signals or large clusters ≥10%) was detected at a frequency of 16% and low-level amplification (as defined by ≥5 FGFR1 signals in ≥50% of tumor cells) at a frequency of 4%. We conclude that FGFR1 amplification is one of the most frequent therapeutically tractable genetic lesions in pulmonary carcinomas. Standardized reporting of FGFR1 amplification in squamous carcinomas of the lung will become increasingly important to correlate therapeutic responses with FGFR1 inhibitors in clinical studies. Thus, our reading and evaluation strategy might serve as a basis for identifying patients for ongoing and upcoming clinical trials.


Clinical Cancer Research | 2011

Blood-Based Gene Expression Signatures in Non–Small Cell Lung Cancer

Thomas Zander; Andrea Hofmann; Andrea Staratschek-Jox; Sabine Classen; Svenja Debey-Pascher; Daniela Maisel; Sascha Ansén; Moritz Hahn; Marc Beyer; Roman K. Thomas; Birgit S. Gathof; Cornelia Mauch; Karl-Stefan Delank; Walburga Engel-Riedel; H.-Erich Wichmann; Erich Stoelben; Joachim L. Schultze; Juergen Wolf

Purpose: Blood-based surrogate markers would be attractive biomarkers for early detection, diagnosis, prognosis, and prediction of therapeutic outcome in cancer. Disease-associated gene expression signatures in peripheral blood mononuclear cells (PBMC) have been described for several cancer types. However, RNA-stabilized whole blood–based technologies would be clinically more applicable and robust. We evaluated the applicability of whole blood–based gene expression profiling for the detection of non–small cell lung cancer (NSCLC). Experimental Design: Expression profiles were generated from PAXgene-stabilized blood samples from three independent groups consisting of NSCLC cases and controls (n = 77, 54, and 102), using the Illumina WG6-VS2 system. Results: Several genes are consistently differentially expressed in whole blood of NSCLC patients and controls. These expression profiles were used to build a diagnostic classifier for NSCLC, which was validated in an independent validation set of NSCLC patients (stages I–IV) and hospital-based controls. The area under the receiver operator curve was calculated to be 0.824 (P < 0.001). In a further independent dataset of stage I NSCLC patients and healthy controls the AUC was 0.977 (P < 0.001). Specificity of the classifier was validated by permutation analysis in both validation cohorts. Genes within the classifier are enriched in immune-associated genes and show specificity for NSCLC. Conclusions: Our results show that gene expression profiles of whole blood allow for detection of manifest NSCLC. These results prompt further development of gene expression–based biomarker tests in peripheral blood for the diagnosis and early detection of NSCLC. Clin Cancer Res; 17(10); 3360–7. ©2011 AACR.


Clinical Cancer Research | 2015

MET amplification status in therapy-naïve adeno- and squamous cell carcinomas of the lung

Hans-Ulrich Schildhaus; Anne M. Schultheis; Josef Rüschoff; Elke Binot; Sabine Merkelbach-Bruse; Jana Fassunke; Wolfgang Schulte; Yon-Dschun Ko; Andreas Schlesinger; Marc Bos; Masyar Gardizi; Walburga Engel-Riedel; Michael Brockmann; Monika Serke; UIlrich Gerigk; Khosro Hekmat; Konrad Frank; Marcel Reiser; Holger Schulz; Stefan Krüger; Erich Stoelben; Thomas Zander; Jürgen Wolf; Reinhard Buettner

Purpose: MET is a potential therapeutic target in lung cancer and both MET tyrosine kinase inhibitors and monoclonal antibodies have entered clinical trials. MET signaling can be activated by various mechanisms, including gene amplification. In this study, we aimed to investigate MET amplification status in adeno- and squamous cell carcinomas of the lung. We propose clearly defined amplification scores and provide epidemiologic data on MET amplification in lung cancer. Experimental Design: We evaluated the prevalence of increased MET gene copy numbers in 693 treatment-naïve cancers by FISH, defined clear cutoff criteria, and correlated FISH results to MET IHC. Results: Two thirds (67%) of lung cancers do not have gains in MET gene copy numbers, whereas 3% show a clear-cut high-level amplification (MET/centromer7 ratio ≥2.0 or average gene copy number per nucleus ≥6.0 or ≥10% of tumor cells containing ≥15 MET copies). The remaining cases can be subdivided into intermediate- (6%) and low-level gains (24%). Importantly, MET amplifications occur at equal frequencies in squamous and adenocarcinomas without or with EGFR or KRAS mutations. Conclusion: MET amplification is not a mutually exclusive genetic event in therapy-naïve non–small cell lung cancer. Our data suggest that it might be useful to determine MET amplification (i) before EGFR inhibitor treatment to identify possible primary resistance to anti-EGFR treatment, and (ii) to select cases that harbor KRAS mutations additionally to MET amplification and, thus, may not benefit from MET inhibition. Furthermore, our study provides comprehensive epidemiologic data for upcoming trials with various MET inhibitors. Clin Cancer Res; 21(4); 907–15. ©2014 AACR.


Annals of Oncology | 2013

Randomized phase 2 trial on refinement of early-stage NSCLC adjuvant chemotherapy with cisplatin and pemetrexed versus cisplatin and vinorelbine: the TREAT study

Michael Kreuter; Johan Vansteenkiste; Juergen R. Fischer; Wilfried Eberhardt; Heike Zabeck; Jens Kollmeier; Monika Serke; Norbert Frickhofen; Martin Reck; Walburga Engel-Riedel; Silke Neumann; Michiel Thomeer; Christian Schumann; P. De Leyn; Thomas Graeter; Georgios Stamatis; I. Zuna; Frank Griesinger; Michael Thomas

BACKGROUND Adjuvant chemotherapy is beneficial in non-small-cell lung cancer (NSCLC). However, balancing toxicity and efficacy mandates improvement. PATIENTS AND METHODS Patients with completely resected stages IB-pT3N1 NSCLC were randomly assigned to either four cycles cisplatin (C: 50 mg/m(2) day (d)1 + 8) and vinorelbine (V: 25 mg/m(2) d1, 8, 15, 22) q4 weeks or four cycles cisplatin (75 mg/m(2) d1) and pemetrexed (Px: 500 mg/m(2) d1) q3 weeks. Primary objective was the clinical feasibility rate (no grade (G)4 neutropenia/thrombocytopenia or thrombocytopenia with bleeding, no G3/4 febrile neutropenia or non-hematological toxicity; no premature withdrawal/death). Secondary objectives were drug delivery and efficacy. RESULTS One hundred and thirty two patients were randomized (stages: 38% IB, 10% IIA, 47% IIB, 5% pT3pN1; histology: 43% squamous, 57% non-squamous). The feasibility rates were 95.5% (cisplatin and pemetrexed, CPx) and 75.4% (cisplatin and vinorelbine, CVb) (P = 0.001); hematological G3/4 toxic effects were 10% (CPx) and 74% (CVb) (P < 0.001), non-hematological toxic effects were comparable (33% and 31%, P = 0.798). Delivery of total mean doses was 90% of planned with CPx, but 66% (cisplatin) and 64% (vinorelbine) with CVb (P < 0.0001). The median number of cycles [treatment time (weeks)] was 4 for CPx (11.2) and 3 for CVb (9.9). Time to withdrawal from therapy differed significantly between arms favoring CPx (P < 0.001). CONCLUSION Adjuvant chemotherapy with CPx is safe and feasible with less toxicity and superior dose delivery compared with CVb.


PLOS ONE | 2013

Prognostic Impact of [18F]Fluorothymidine and [18F]Fluoro-D-Glucose Baseline Uptakes in Patients with Lung Cancer Treated First-Line with Erlotinib

Matthias Scheffler; Thomas Zander; Lucia Nogova; Carsten Kobe; Deniz Kahraman; Markus Dietlein; Irini Papachristou; Lukas C. Heukamp; Reinhard Büttner; Ronald Boellaard; Adriaan A. Lammertsma; Silvia Querings; Erich Stoelben; Walburga Engel-Riedel; Bernd Neumaier; Jürgen Wolf

3′-deoxy-3′-[18F]fluoro-L-thymidine (FLT) and 2′-deoxy-2′-[18F]fluoro-D-glucose (FDG) are used to visualize proliferative and metabolic activity of tumors. In this study we aimed at evaluating the prognostic value of FLT and FDG uptake measured by positron emission tomography (PET) in patients with metastatic non-small cell lung cancer (NSCLC) prior to systemic therapy with erlotinib. FLT and FDG maximum standardized uptake (SUVmax) values per patient were analyzed in 40 chemotherapy naive patients with advanced NSCLC (stage IV) before treatment with erlotinib. Prior therapy median SUVmax was 6.6 for FDG and 3.0 for FLT, respectively. In univariate analysis, patients with an FDG SUVmax <6.6 had a significantly better overall survival (16.3 months [95% confidence interval [CI] 7.1–25.4 months]) compared to patients with an FDG SUVmax ≥6.6 (3.1 months [95% CI 0.6–5.5 months]) (p<0.001, log rank). Similarly, low FLT uptake (SUVmax <3.0) was associated with significantly longer survival (10.3 months (0–23.3 months, 95% CI) compared to high FLT uptake (3.4 months (0–8.1 months, 95% CI) (p = 0.027). The independent prognostic value of baseline FDG uptake was demonstrated in multivariate analysis (p = 0.05, Cox regression). These data suggest that baseline SUVmax values for both FDG and FLT PET might be further developed as markers for prognostic stratification of patients in advanced NSCLC treated with tyrosine kinase inhibitors (TKI) directed against the epidermal growth factor receptor (EGFR). Trial Registration Clinicaltrials.gov, Identifier: NCT00568841

Collaboration


Dive into the Walburga Engel-Riedel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jens Kollmeier

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Michael Brockmann

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge