Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Walter M. Bray is active.

Publication


Featured researches published by Walter M. Bray.


Journal of Natural Products | 2010

A β-Carboline Alkaloid from the Papua New Guinea Marine Sponge Hyrtios reticulatus

Wayne D. Inman; Walter M. Bray; Nadine C. Gassner; R. Scott Lokey; Karen Tenney; Young Yongchun Shen; Karen TenDyke; Ted Suh; Phillip Crews

A new 1-imidazoyl-3-carboxy-6-hydroxy-beta-carboline alkaloid, named hyrtiocarboline (1), was isolated from a Papua New Guinea marine sponge, Hyrtios reticulatus. The structure was elucidated from spectroscopic data, including (1)H-(15)N HMBC NMR experiments, which provided complementary (15)N chemical shift information in support of the structure. This compound showed selective antiproliferative activity against H522-T1 non-small cell lung, MDA-MB-435 melanoma, and U937 lymphoma cancer cell lines.


Journal of Natural Products | 2011

Natural Product Libraries to Accelerate the High Throughput Discovery of Therapeutic Leads

Tyler A. Johnson; Johann Sohn; Wayne D. Inman; Samarkand A. Estee; Steven T. Loveridge; Helene C. Vervoort; Karen Tenney; Junke Liu; Kenny K. H. Ang; Joseline Ratnam; Walter M. Bray; Nadine C. Gassner; Young Yongchun Shen; R. Scott Lokey; James H. McKerrow; Kyria Boundy-Mills; Arif Nukanto; Atit Kanti; Heddy Julistiono; Leonardus B S Kardono; Leonard F. Bjeldanes; Phillip Crews

A high-throughput (HT) paradigm generating LC-MS-UV-ELSD-based natural product libraries to discover compounds with new bioactivities and or molecular structures is presented. To validate this methodology, an extract of the Indo-Pacific marine sponge Cacospongia mycofijiensis was evaluated using assays involving cytoskeletal profiling, tumor cell lines, and parasites. Twelve known compounds were identified including latrunculins (1-4, 10), fijianolides (5, 8, 9), mycothiazole (11), aignopsanes (6, 7), and sacrotride A (13). Compounds 1-5 and 8-11 exhibited bioactivity not previously reported against the parasite T. brucei, while 11 showed selectivity for lymphoma (U937) tumor cell lines. Four new compounds were also discovered including aignopsanoic acid B (13), apo-latrunculin T (14), 20-methoxy-fijianolide A (15), and aignopsane ketal (16). Compounds 13 and 16 represent important derivatives of the aignopsane class, 14 exhibited inhibition of T. brucei without disrupting microfilament assembly, and 15 demonstrated modest microtubule-stabilizing effects. The use of removable well plate libraries to avoid false positives from extracts enriched with only one or two major metabolites is also discussed. Overall, these results highlight the advantages of applying modern methods in natural products-based research to accelerate the HT discovery of therapeutic leads and/or new molecular structures using LC-MS-UV-ELSD-based libraries.


Journal of Biological Chemistry | 2014

Coherence between Cellular Responses and in Vitro Splicing Inhibition for the Anti-tumor Drug Pladienolide B and Its Analogs

Kerstin A. Effenberger; David D. Anderson; Walter M. Bray; Beth E. Prichard; Nianchun Ma; Matthew S. Adams; Arun K. Ghosh; Melissa S. Jurica

Background: Pladienolide B is a complex natural product that potently inhibits pre-mRNA splicing. Results: The same molecular features of pladienolide B are required for the drugs effects on cell growth, morphology, and splicing. Conclusion: Simplified synthesis and modification of active pladienolide B is possible. Significance: Pladienolide B analogs can be used to study the relationship between splicing and cancer cell function. Pladienolide B (PB) is a potent cancer cell growth inhibitor that targets the SF3B1 subunit of the spliceosome. There is considerable interest in the compound as a potential chemotherapeutic, as well as a tool to study SF3B1 function in splicing and cancer development. The molecular structure of PB, a bacterial natural product, contains a 12-member macrolide ring with an extended epoxide-containing side chain. Using a novel concise enantioselective synthesis, we created a series of PB structural analogs and the structurally related compound herboxidiene. We show that two methyl groups in the PB side chain, as well as a feature of the macrolide ring shared with herboxidiene, are required for splicing inhibition in vitro. Unexpectedly, we find that the epoxy group contributes only modestly to PB potency and is not absolutely necessary for activity. The orientations of at least two chiral centers off the macrolide ring have no effect on PB activity. Importantly, the ability of analogs to inhibit splicing in vitro directly correlated with their effects in a series of cellular assays. Those effects likely arise from inhibition of some, but not all, endogenous splicing events in cells, as previously reported for the structurally distinct SF3B1 inhibitor spliceostatin A. Together, our data support the idea that the impact of PB on cells is derived from its ability to impair the function of SF3B1 in splicing and also demonstrate that simplification of the PB scaffold is feasible.


Antimicrobial Agents and Chemotherapy | 2014

Image-Based 384-Well High-Throughput Screening Method for the Discovery of Skyllamycins A to C as Biofilm Inhibitors and Inducers of Biofilm Detachment in Pseudomonas aeruginosa

Gabriel Navarro; Andrew T. Cheng; Kelly C. Peach; Walter M. Bray; Valerie S. Bernan; Fitnat H. Yildiz; Roger G. Linington

ABSTRACT To date, most antibiotics have primarily been developed to target bacteria in the planktonic state. However, biofilm formation allows bacteria to develop tolerance to antibiotics and provides a mechanism to evade innate immune systems. Therefore, there is a significant need to identify small molecules to prevent biofilm formation and, more importantly, to disperse or eradicate preattached biofilms, which are a major source of bacterial persistence in nosocomial infections. We now present a modular high-throughput 384-well image-based screening platform to identify Pseudomonas aeruginosa biofilm inhibitors and dispersal agents. Biofilm coverage measurements were accomplished using non-z-stack epifluorescence microscopy to image a constitutively expressing green fluorescent protein (GFP)-tagged strain of P. aeruginosa and quantified using an automated image analysis script. Using the redox-sensitive dye XTT, bacterial cellular metabolic activity was measured in conjunction with biofilm coverage to differentiate between classical antibiotics and nonantibiotic biofilm inhibitors/dispersers. By measuring biofilm coverage and cellular activity, this screen identifies compounds that eradicate biofilms through mechanisms that are disparate from traditional antibiotic-mediated biofilm clearance. Screening of 312 natural-product prefractions identified the cyclic depsipeptide natural products skyllamycins B and C as nonantibiotic biofilm inhibitors with 50% effective concentrations (EC50s) of 30 and 60 μM, respectively. Codosing experiments of skyllamycin B and azithromycin, an antibiotic unable to clear preattached biofilms, demonstrated that, in combination, these compounds were able to eliminate surface-associated biofilms and depress cellular metabolic activity. The skyllamycins represent the first known class of cyclic depsipeptide biofilm inhibitors/dispersers.


Journal of Natural Products | 2011

Biostructural Features of Additional Jasplakinolide (Jaspamide) Analogues

Katharine R. Watts; Brandon I. Morinaka; Taro Amagata; Sarah J. Robinson; Karen Tenney; Walter M. Bray; Nadine C. Gassner; R. Scott Lokey; Joseph Media; Frederick A. Valeriote; Phillip Crews

The cyclodepsipeptide jasplakinolide (1) (aka jaspamide), isolated previously from the marine sponge Jaspis splendens, is a unique cytotoxin and molecular probe that operates through stabilization of filamentous actin (F-actin). We have recently disclosed that two analogues of 1, jasplakinolides B (3) and E, were referred to the National Cancer Institutes (NCI) Biological Evaluation Committee, and the objective of this study was to reinvestigate a Fijian collection of J. splendens in an effort to find jasplakinolide congeners with similar biological properties. The current efforts have afforded six known jasplakinolide analogues (4-7, 9, 10), two structures requiring revision (8 and 14), and four new congeners of 1 (11-13, 15) including open-chain derivatives and structures with modified β-tyrosine residues. Compounds were evaluated for biological activity in the NCIs 60 cell line screen and in a microfilament disruption assay in both HCT-116 and HeLa cells. These two phenotypic screens provide evidence that each cytotoxic analogue, including jasplakinolide B (3), operates by modification of microfilaments. The new structure jasplakinolide V (13) has also been selected for study by the NCIs Biological Evaluation Committee. In addition, the results of a clonogenic dose-response study on jasplakinolide are presented.


PLOS Pathogens | 2012

A Cell-Based Screen Reveals that the Albendazole Metabolite, Albendazole Sulfone, Targets Wolbachia

Laura R. Serbus; Frédéric Landmann; Walter M. Bray; Pamela M. White; Jordan Ruybal; R. Scott Lokey; Alain Debec; William Sullivan

Wolbachia endosymbionts carried by filarial nematodes give rise to the neglected diseases African river blindness and lymphatic filariasis afflicting millions worldwide. Here we identify new Wolbachia-disrupting compounds by conducting high-throughput cell-based chemical screens using a Wolbachia-infected, fluorescently labeled Drosophila cell line. This screen yielded several Wolbachia-disrupting compounds including three that resembled Albendazole, a widely used anthelmintic drug that targets nematode microtubules. Follow-up studies demonstrate that a common Albendazole metabolite, Albendazole sulfone, reduces intracellular Wolbachia titer both in Drosophila melanogaster and Brugia malayi, the nematode responsible for lymphatic filariasis. Significantly, Albendazole sulfone does not disrupt Drosophila microtubule organization, suggesting that this compound reduces titer through direct targeting of Wolbachia. Accordingly, both DNA staining and FtsZ immunofluorescence demonstrates that Albendazole sulfone treatment induces Wolbachia elongation, a phenotype indicative of binary fission defects. This suggests that the efficacy of Albendazole in treating filarial nematode-based diseases is attributable to dual targeting of nematode microtubules and their Wolbachia endosymbionts.


Journal of Medicinal Chemistry | 2010

New Structures and Bioactivity Properties of Jasplakinolide (Jaspamide) Analogues from Marine Sponges

Sarah J. Robinson; Brandon I. Morinaka; Taro Amagata; Karen Tenney; Walter M. Bray; Nadine C. Gassner; R. Scott Lokey; Phillip Crews

The goal of this study was to isolate and study additional jasplakinolide analogues from two taxonomically distinct marine sponges including two Auletta spp. and one Jaspis splendens. This led to the isolation of jasplakinolide (1) and eleven jasplakinolide analogues (3-13) including seven new analogues (6-10, 12, and 13). Structure elucidation of the new compounds was based on a combination of 1D and 2D NMR analysis, optical rotation, circular dichroism, and preparation of Moshers esters. Five of the new compounds are oxidized tryptophan derivatives of 1, including a unique quinazoline derivative (9). Compounds 1, 3, 5-8, and 11 were evaluated in the NCI 60 cell line screen, and all compounds were tested in a microfilament disruption assay. Jasplakinolide B (11) exhibited potent cytotoxicity (GI(50) < 1 nM vs human colorectal adenocarcinoma (HCT-116) cells) but did not exhibit microfilament-disrupting activity at 80 nM.


Journal of Natural Products | 2014

Borrelidin B: isolation, biological activity, and implications for nitrile biosynthesis.

Christopher J. Schulze; Walter M. Bray; Frank Loganzo; My-Hanh Lam; Teresa Szal; Anabella Villalobos; Frank E. Koehn; Roger G. Linington

Borrelidin (1) is a nitrile-containing bacterially derived polyketide that is a potent inhibitor of bacterial and eukaryotic threonyl-tRNA synthetases. We now report the discovery of borrelidin B (2), a tetrahydro-borrelidin derivative containing an aminomethyl group in place of the nitrile functionality in borrelidin. The discovery of this new metabolite has implications for both the biosynthesis of the nitrile group and the bioactivity of the borrelidin compound class. Screening in the SToPS assay for tRNA synthetase inhibition revealed that the nitrile moiety is essential for activity, while profiling using our in-house image-based cytological profiling assay demonstrated that 2 retains biological activity by causing a mitotic stall, even in the absence of the nitrile motif.


Journal of Biomolecular Screening | 2013

A High-Throughput Splicing Assay Identifies New Classes of Inhibitors of Human and Yeast Spliceosomes

Kerstin A. Effenberger; Rhonda Perriman; Walter M. Bray; R. Scott Lokey; Manuel Ares; Melissa S. Jurica

The spliceosome is the macromolecular machine responsible for pre-mRNA splicing, an essential step in eukaryotic gene expression. During splicing, myriad subunits join and leave the spliceosome as it works on the pre-mRNA substrate. Strikingly, there are very few small molecules known to interact with the spliceosome. Splicing inhibitors are needed to capture transient spliceosome conformations and probe important functional components. Such compounds may also have chemotherapeutic applications, as links between splicing and cancer are increasingly uncovered. To identify new splicing inhibitors, we developed a high-throughput assay for in vitro splicing using a reverse transcription followed by quantitative PCR readout. In a pilot screen of 3080 compounds, we identified three small molecules that inhibit splicing in HeLa extract by interfering with different stages of human spliceosome assembly. Two of the compounds similarly affect spliceosomes in yeast extracts, suggesting selective targeting of conserved components. By examining related molecules, we identified chemical features required for the activity of two of the splicing inhibitors. In addition to verifying our assay procedure and paving the way to larger screens, these studies establish new compounds as chemical probes for investigating the splicing machinery.


Antimicrobial Agents and Chemotherapy | 2014

An NF-κB-Based High-Throughput Screen Identifies Piericidins as Inhibitors of the Yersinia pseudotuberculosis Type III Secretion System

Miles C. Duncan; Weng Ruh Wong; Allison J. Dupzyk; Walter M. Bray; Roger G. Linington; Victoria Auerbuch

ABSTRACT The type III secretion system (T3SS) is a bacterial appendage used by dozens of Gram-negative pathogens to subvert host defenses and cause disease, making it an ideal target for pathogen-specific antimicrobials. Here, we report the discovery and initial characterization of two related natural products with T3SS-inhibitory activity that were derived from a marine actinobacterium. Bacterial extracts containing piericidin A1 and the piericidin derivative Mer-A 2026B inhibited Yersinia pseudotuberculosis from triggering T3SS-dependent activation of the host transcription factor NF-κB in HEK293T cells but were not toxic to mammalian cells. As the Yersinia T3SS must be functional in order to trigger NF-κB activation, these data indicate that piericidin A1 and Mer-A 2026B block T3SS function. Consistent with this, purified piericidin A1 and Mer-A 2026B dose-dependently inhibited translocation of the Y. pseudotuberculosis T3SS effector protein YopM inside CHO cells. In contrast, neither compound perturbed bacterial growth in vitro, indicating that piericidin A1 and Mer-A 2026B do not function as general antibiotics in Yersinia. In addition, when Yersinia was incubated under T3SS-inducing culture conditions in the absence of host cells, Mer-A 2026B and piericidin A1 inhibited secretion of T3SS cargo as effectively as or better than several previously described T3SS inhibitors, such as MBX-1641 and aurodox. This suggests that Mer-A 2026B and piericidin A1 do not block type III secretion by blocking the bacterium-host cell interaction, but rather inhibit an earlier stage, such as T3SS needle assembly. In summary, the marine-derived natural products Mer-A 2026B and piericidin A1 possess previously uncharacterized activity against the bacterial T3SS.

Collaboration


Dive into the Walter M. Bray's collaboration.

Top Co-Authors

Avatar

R. Scott Lokey

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen Tenney

University of California

View shared research outputs
Top Co-Authors

Avatar

Kelly C. Peach

University of California

View shared research outputs
Top Co-Authors

Avatar

Phillip Crews

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sean C. Nisam

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge