Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wee-Liat Ong is active.

Publication


Featured researches published by Wee-Liat Ong.


Lab on a Chip | 2006

High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets

Levent Yobas; Stefan Martens; Wee-Liat Ong; Nagarajan Ranganathan

A high-performance flow-focusing geometry for spontaneous generation of monodispersed droplets is demonstrated. In this geometry, a two-phase flow is forced through a circular orifice integrated inside a silicon-based microchannel. The orifice with its cusp-like edge exerts a ring of maximized stress around the flow and ensures controlled breakup of droplets for a wide range of flow rates, forming highly periodic and reproducible dispersions. The droplet generation can be remarkably rapid, exceeding 10(4) s(-1) for water-in-oil droplets and reaching 10(3) s(-1) for oil-in-water droplets, being largely controlled by flow rate of the continuous phase. The droplet diameter and generation frequency are compared against a quasi-equilibrium model based on the critical Capillary number. The droplets are obtained despite the low Capillary number, below the critical value identified by the ratio of viscosities between the two phases and simple shear-flow.


Nature Materials | 2013

Surface chemistry mediates thermal transport in three-dimensional nanocrystal arrays

Wee-Liat Ong; Sara M. Rupich; Dmitri V. Talapin; Alan J. H. McGaughey; Jonathan A. Malen

Arrays of ligand-stabilized colloidal nanocrystals with size-tunable electronic structure are promising alternatives to single-crystal semiconductors in electronic, optoelectronic and energy-related applications. Hard/soft interfaces in these nanocrystal arrays (NCAs) create a complex and uncharted vibrational landscape for thermal energy transport that will influence their technological feasibility. Here, we present thermal conductivity measurements of NCAs (CdSe, PbS, PbSe, PbTe, Fe3O4 and Au) and reveal that energy transport is mediated by the density and chemistry of the organic/inorganic interfaces, and the volume fractions of nanocrystal cores and surface ligands. NCA thermal conductivities are controllable within the range 0.1-0.3 W m(-1) K(-1), and only weakly depend on the thermal conductivity of the inorganic core material. This range is 1,000 times lower than the thermal conductivity of silicon, presenting challenges for heat dissipation in NCA-based electronics and photonics. It is, however, 10 times smaller than that of Bi2Te3, which is advantageous for NCA-based thermoelectric materials.


Applied Physics Letters | 2007

Thermally mediated droplet formation in microchannels

Nam-Trung Nguyen; Teck-Hui Ting; Yit Fatt Yap; Teck Neng Wong; John C. Chai; Wee-Liat Ong; Junlong Zhou; Say Hwa Tan; Levent Yobas

Precise dispensing of microdroplets is an important process for droplet-based microfluidics. The dropletformation by shear force between two immiscible fluids depends on their flow rates, the viscosities, and the interfacial tension. In this letter, the authors report the use of integrated microheater and temperature sensor for controlling the dropletformation process. The technique exploits the dependency on temperature of viscosities and interfacial tension. Using a relatively low heating temperature ranging from 25 to 70 ° C , the droplet diameter can be adjusted to over two times of its original value. The relatively low temperature range makes sure that this concept is applicable for droplets containing biological samples.


Journal of Physics: Conference Series | 2006

Evaluation of bonding between oxygen plasma treated polydimethyl siloxane and passivated silicon

K.C. Tang; E. Liao; Wee-Liat Ong; J.D.S. Wong; Ajay Agarwal; Ranganathan Nagarajan; Levent Yobas

Oxygen plasma treatment has been used extensively to bond polydimethyl siloxane to polydimethyl siloxane or glass in the rapid prototyping of microfluidic devices. This study aimed to improve the bonding quality of polydimethyl siloxane to passivated silicon using oxygen plasma treatment, and also to evaluate the bonding quality. Four types of passivated silicon were used: phosphosilicate glass, undoped silicate glass, silicon nitride and thermally grown silicon dioxide. Bonding strength was evaluated qualitatively and quantitatively using manual peel and mechanical shear tests respectively. Through peel tests we found that the lowering of plasma pressure from 500 to 30 mTorr and using a plasma power between 20 to 60 W helped to improve the bond quality for the first three types of passivation. Detailed analysis and discussion were conducted to explain the discrepancy between the bonding strength results and peeling results. Our results suggested that polydimethyl siloxane can be effectively bonded to passivated silicon, just as to polydimethyl siloxane or glass.


Nano Letters | 2015

Vibrational Mismatch of Metal Leads Controls Thermal Conductance of Self-Assembled Monolayer Junctions

Shubhaditya Majumdar; Jonatan A. Sierra-Suarez; Scott N. Schiffres; Wee-Liat Ong; C. Fred Higgs; Alan J. H. McGaughey; Jonathan A. Malen

We present measurements of the thermal conductance of self-assembled monolayer (SAM) junctions formed between metal leads (Au, Ag, Pt, and Pd) with mismatched phonon spectra. The thermal conductance obtained from frequency domain thermoreflectance experiments is 65 ± 7 MW/m(2) K for matched Au-alkanedithiol-Au junctions, while the mismatched Au-alkanedithiol-Pd junctions yield a thermal conductance of 36 ± 3 MW/m(2) K. The experimental observation that junction thermal conductance (per molecule) decreases as the mismatch between the lead vibrational spectra increases, paired with results from molecular dynamics (MD) simulations, suggest that phonons scatter elastically at the metal-SAM interfaces. Furthermore, we resolve a known discrepancy between measurements and MD predictions of SAM thermal conductance by using a contact mechanics model to predict 54 ± 15% areal contact in the Au-alkanedithiol-Au experimental junction. This incomplete contact obscures the actual junction thermal conductance of 115 ± 22 MW/m(2) K, which is comparable to that of metal-dielectric interfaces.


Nature Materials | 2017

Orientational order controls crystalline and amorphous thermal transport in superatomic crystals

Wee-Liat Ong; Evan S. O’Brien; Patrick S. M. Dougherty; Daniel W. Paley; C. Fred Higgs; Alan J. H. McGaughey; Jonathan A. Malen; Xavier Roy

In the search for rationally assembled functional materials, superatomic crystals (SACs) have recently emerged as a unique class of compounds that combine programmable nanoscale building blocks and atomic precision. As such, they bridge traditional semiconductors, molecular solids, and nanocrystal arrays by combining their most attractive features. Here, we report the first study of thermal transport in SACs, a critical step towards their deployment as electronic, thermoelectric, and phononic materials. Using frequency domain thermoreflectance (FDTR), we measure thermal conductivity in two series of SACs: the unary compounds Co6E8(PEt3)6 (E = S, Se, Te) and the binary compounds [Co6E8(PEt3)6][C60]2. We find that phonons that emerge from the periodicity of the superstructures contribute to thermal transport. We also demonstrate a transformation from amorphous to crystalline thermal transport behaviour through manipulation of the vibrational landscape and orientational order of the superatoms. The structural control of orientational order enabled by the atomic precision of SACs expands the conceptual design space for thermal science.


Applied Physics Letters | 2006

Buried microfluidic channel for integrated patch-clamping assay

Wee-Liat Ong; Jack-Sheng Kee; Agarwal Ajay; Nagarajan Ranganathan; K.C. Tang; Levent Yobas

The authors present a microfluidic device towards an integrated patch-clamping assay. The device replaces conventional glass patch pipette with a buried microfluidic channel on silicon substrate. The microchannel fabrication involves reforming doped glass under heat and pressure, a process, in principle, analogous to the heat-pulling/polishing of glass patch pipettes. Unlike etching substrate, this process leaves a smooth glass surface for seal formation with cell membrane. The microchannel is evolved from a trapped void inside the trench during nonconformal deposition of the doped glass. The results of seal formation with mammalian cells captured at such microchannel opening are presented.


ACS Nano | 2013

Bi 1 x Sb x Alloy Nanocrystals: Colloidal Synthesis, Charge Transport, and Thermoelectric Properties

Hao Zhang; Jae Sung Son; Jaeyoung Jang; Jong-Soo Lee; Wee-Liat Ong; Jonathan A. Malen; Dmitri V. Talapin

Nanostructured Bi1-xSbx alloys constitute a convenient system to study charge transport in a nanostructured narrow-gap semiconductor with promising thermoelectric properties. In this work, we developed the colloidal synthesis of monodisperse sub-10 nm Bi1-xSbx alloy nanocrystals (NCs) with controllable size and compositions. The surface chemistry of Bi1-xSbx NCs was tailored with inorganic ligands to improve the interparticle charge transport as well as to control the carrier concentration. Temperature-dependent (10-300 K) electrical measurements were performed on the Bi1-xSbx NC based pellets to investigate the effect of surface chemistry and grain size (∼10-40 nm) on their charge transport properties. The Hall effect measurements revealed that the temperature dependence of carrier mobility and concentration strongly depended on the grain size and the surface chemistry, which was different from the reported bulk behavior. At low temperatures, electron mobility in nanostructured Bi1-xSbx was directly proportional to the average grain size, while the concentration of free carriers was inversely proportional to the grain size. We propose a model explaining such behavior. Preliminary measurements of thermoelectric properties showed a ZT value comparable to those of bulk Bi1-xSbx alloys at 300 K, suggesting a potential of Bi1-xSbx NCs for low-temperature thermoelectric applications.


Journal of Micromechanics and Microengineering | 2007

Rapid prototyping of microfluidic systems using a laser-patterned tape

L.W. Luo; C.Y. Teo; Wee-Liat Ong; K.C. Tang; Lih Feng Cheow; Levent Yobas

We introduce a laser-patterned tape as a master for replica moulding microfluidics in poly(dimethylsiloxane) (PDMS). Normally, a laser is applied to scribe microchannels directly on poly(methyl methacrylate) (PMMA) substrates. This direct engraving usually offers a faster turn-around time than conventional soft lithography but generates rough surfaces which perform poorly under phase-contrast microscopy imaging. Using a laser-patterned tape as the master template for replica-moulding microfluidics in PDMS, we combine the rapid turn-around time of laser ablation and relatively smooth surface finish of soft lithography. Hence, microfluidic devices suitable for optical microscopy imaging can be obtained within several hours.


Neurochemical Research | 2006

Differential effects of polyunsaturated fatty acids on membrane capacitance and exocytosis in rat pheochromocytoma-12 cells.

Wee-Liat Ong; Bin Jiang; Ning Tang; Su-Fung Ling; Jin-Fei Yeo; Shunhui Wei; Akhlaq A. Farooqui; Wei-Yi Ong

The fusion of synaptic vesicles with the plasma membrane during exocytosis can be recorded by membrane capacitance measurements under voltage-clamp conditions. These measurements enable high time-resolution quantitation of exocytosis. The present study was carried out using the above technique to elucidate the effects of various polyunsaturated fatty acids on exocytosis in a neuroendocrine cell, the rat pheochromocytoma-12 (PC12) cell. External application of eicosapentaenoic acid and arachidonic acid resulted in an increase in capacitance of PC12 cells, indicating fusion of secretory vesicles with cell membranes and exocytosis. In contrast, docosahexaenoic acid, linoleic acid, oleic acid, and vehicle control had no significant effect on capacitance. The above findings show differential effects of polyunsaturated fatty acids on exocytosis in PC12 cells. It is postulated that besides arachidonic acid, eicosapentaenoic acid could also play an important role in exocytosis and neurotransmitter release, in neurons and hormone-secreting cells.

Collaboration


Dive into the Wee-Liat Ong's collaboration.

Top Co-Authors

Avatar

Levent Yobas

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan A. Malen

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

K.C. Tang

Singapore Science Park

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ajay Agarwal

Central Electronics Engineering Research Institute

View shared research outputs
Top Co-Authors

Avatar

C. Fred Higgs

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge