Weidong Sun
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Weidong Sun.
Geochemistry Geophysics Geosystems | 2006
Klaus Peter Jochum; Brigitte Stoll; Kirstin Herwig; Matthias Willbold; Albrecht W. Hofmann; Marghaleray Amini; Susanne Aarburg; Wafa Abouchami; Eric Hellebrand; Beate Mocek; Ingrid Raczek; Andreas Stracke; Olivier Alard; Claudia Bouman; Stefan Becker; Marc Dücking; Helene Brätz; Reiner Klemd; Deon de Bruin; Dante Canil; Dave Hugh Cornell; Cees‐Jan de Hoog; Claude Dalpe; Leonid V. Danyushevsky; Anton Eisenhauer; Yongjun Gao; J. E. Snow; Nora Groschopf; Detlef Günther; Christopher Latkoczy
We present new analytical data of major and trace elements for the geological MPI-DING glasses KL2-G, ML3B-G, StHs6/80-G, GOR128-G, GOR132-G, BM90/21-G, T1-G, and ATHO-G. Different analytical methods were used to obtain a large spectrum of major and trace element data, in particular, EPMA, SIMS, LA-ICPMS, and isotope dilution by TIMS and ICPMS. Altogether, more than 60 qualified geochemical laboratories worldwide contributed to the analyses, allowing us to present new reference and information values and their uncertainties (at 95% confidence level) for up to 74 elements. We complied with the recommendations for the certification of geological reference materials by the International Association of Geoanalysts (IAG). The reference values were derived from the results of 16 independent techniques, including definitive (isotope dilution) and comparative bulk (e.g., INAA, ICPMS, SSMS) and microanalytical (e.g., LA-ICPMS, SIMS, EPMA) methods. Agreement between two or more independent methods and the use of definitive methods provided traceability to the fullest extent possible. We also present new and recently published data for the isotopic compositions of H, B, Li, O, Ca, Sr, Nd, Hf, and Pb. The results were mainly obtained by high-precision bulk techniques, such as TIMS and MC-ICPMS. In addition, LA-ICPMS and SIMS isotope data of B, Li, and Pb are presented.
Nature | 2004
Weidong Sun; Richard J. Arculus; Vadim S. Kamenetsky; Raymond A. Binns
A relationship between convergent margin magmas and copper–gold ore mineralization has long been recognized. The nature of the genetic link is controversial, particularly whether the link is due to high-oxygen-fugacity (fO2) melts and fluids released from subducted slabs or to brine exsolution during magmatic evolution. For submarine, subduction-related volcanic glasses from the eastern Manus basin, Papua New Guinea, we here report abrupt decreases in gold and copper abundances, coupled with a switch in the behaviour of titanium and iron from concentration increases to decreases as SiO2 rises. We propose that the abrupt depletion in gold and copper results from concurrent sulphur reduction as a result of fO2 buffering, causing enhanced formation of copper–gold hydrosulphide complexes that become scavenged from crystallizing melts into cogenetic magmatic aqueous fluids. This process is particularly efficient in oxidized arc magmas with substantial sulphate. We infer that subsequent migration and cooling of exsolved aqueous fluids create links between copper–gold mineralization and arc magmatism in the Manus basin, and at convergent margins in general.
The Journal of Geology | 2002
Weidong Sun; Shuguang Li; Yadong Chen; Yujing Li
The ca. 400‐km‐long granitoid belt in the South Qinling is believed to be a synorogenic product of the collision between the North and South China Blocks along the Qinling‐Dabie orogenic belt in central China. Single and multigrain zircon U‐Pb dating of six of these granitoid bodies indicate that the granitoids were formed between \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape
International Geology Review | 2011
Weidong Sun; Hong Zhang; Ming-Xing Ling; Xing Ding; Sun-Lin Chung; Jibin Zhou; Xiaoyong Yang; Weiming Fan
International Geology Review | 2011
Fang-Yue Wang; Ming-Xing Ling; Xing Ding; Yanhua Hu; Jibin Zhou; Xiaoyong Yang; Hua-Ying Liang; Weiming Fan; Weidong Sun
220\pm 1
Nature | 2003
Weidong Sun; Vickie C. Bennett; Stephen M. Eggins; Vadim S. Kamenetsky; Richard J. Arculus
Chemical Geology | 2003
Weidong Sun; V. C. Bennett; Stephen M. Eggins; Richard J. Arculus; Michael R. Perfit
\end{document} and \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape
Rapid Communications in Mass Spectrometry | 2011
Ming-Xing Ling; Fatemeh Sedaghatpour; Fang-Zhen Teng; Phillip D. Hays; Josiah Strauss; Weidong Sun
The Journal of Geology | 2012
Weidong Sun; Ming-Xing Ling; Sun-Lin Chung; Xing Ding; Xiaoyong Yang; Hua-Ying Liang; Weiming Fan; Richard Goldfarb; Qing-Zhu Yin
205\pm 1
International Geology Review | 2011
Ming-Xing Ling; Fang-Yue Wang; Xing Ding; Jibin Zhou; Weidong Sun