Weihe Xu
Stevens Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Weihe Xu.
Applied Physics Letters | 2009
Xi Chen; Shiyou Xu; Nan Yao; Weihe Xu; Yong Shi
Direct piezoelectric potential measurement of single lead ziroconate titanate (PZT) nanofiber under bending using a nanomanipulator inside a scanning electron microscope chamber was presented. The PZT nanofibers, with the diameter and length around 100 nm and 70–100 μm, respectively, were aligned across trenches on a silicon substrate with a thermally grown oxide diffusion barrier and evaporated gold electrodes. A potential of ∼0.4 mV was generated when a bending moment was applied to a PZT nanofiber with an effective length of 4 μm by a tungsten tip of the nanomanipulator. The experiment demonstrated the feasibility of using these PZT nanofibers for nanoscale sensing, actuation, and energy harvesting.
Scientific Reports | 2015
Xiaojing Huang; Kenneth Lauer; Jesse N. Clark; Weihe Xu; Evgeny Nazaretski; Ross Harder; Ian K. Robinson; Yong S. Chu
We report an experimental ptychography measurement performed in fly-scan mode. With a visible-light laser source, we demonstrate a 5-fold reduction of data acquisition time. By including multiple mutually incoherent modes into the incident illumination, high quality images were successfully reconstructed from blurry diffraction patterns. This approach significantly increases the throughput of ptychography, especially for three-dimensional applications and the visualization of dynamic systems.
Nanotechnology | 2010
Weihe Xu; Yong Shi; Hamid Hadim
The P-type perovskite oxides La(1-x)Sr(x)CoO(3) are a promising group of complex oxide thermoelectric (TE) materials. The thermoelectric properties of these oxides are expected to be significantly improved when their critical dimensions are reduced to the nanoscale. In this paper, the La(0.95)Sr(0.05)CoO(3) nanofibers, with diameters in the range of approximately 35 nm, were successfully prepared by the electrospinning process. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize these thermoelectric nanofibers. A micro-electromechanical (MEMS) tester was designed and fabricated to measure the Seebeck coefficient of the nanofibers. The measured voltage output was as large as 1.7 mV and the obtained Seebeck coefficient of the nanofibers reached 650 microV K(-1).
Review of Scientific Instruments | 2014
Evgeny Nazaretski; Xiaojing Huang; Hanfei Yan; K. Lauer; Raymond Conley; Nathalie Bouet; J. Zhou; Weihe Xu; D. Eom; D. Legnini; Ross Harder; Chung-Kwei Lin; Yu-Han Chen; Y. Hwu; Y. S. Chu
We have designed and constructed a dedicated instrument to perform ptychography measurements and characterization of multilayer Laue lenses nanofocusing optics. The design of the scanning microscope provides stability of components and minimal thermal drifts, requirements for nanometer scale spatial resolution measurements. We performed thorough laboratory characterization of the instrument in terms of resolution and thermal drifts with subsequent measurements at a synchrotron. We have successfully acquired and reconstructed ptychography data yielding 11 nm line focus.
Nanotechnology | 2011
A.A. El Mel; A. Achour; Weihe Xu; Chang-Hwan Choi; Eric Gautron; B. Angleraud; A. Granier; L. Le Brizoual; M.A. Djouadi; Pierre-Yves Tessier
Hierarchical carbon nanostructures based on ultra-long carbon nanofibers (CNF) decorated with carbon nanotubes (CNT) have been prepared using plasma processes. The nickel/carbon composite nanofibers, used as a support for the growth of CNT, were deposited on nanopatterned silicon substrate by a hybrid plasma process, combining magnetron sputtering and plasma-enhanced chemical vapor deposition (PECVD). Transmission electron microscopy revealed the presence of spherical nanoparticles randomly dispersed within the carbon nanofibers. The nickel nanoparticles have been used as a catalyst to initiate the growth of CNT by PECVD at 600°C. After the growth of CNT onto the ultra-long CNF, SEM imaging revealed the formation of hierarchical carbon nanostructures which consist of CNF sheathed with CNTs. Furthermore, we demonstrate that reducing the growth temperature of CNT to less than 500°C leads to the formation of carbon nanowalls on the CNF instead of CNT. This simple fabrication method allows an easy preparation of hierarchical carbon nanostructures over a large surface area, as well as a simple manipulation of such material in order to integrate it into nanodevices.
Nanotechnology | 2012
A.A. El Mel; E Gautron; B Angleraud; A Granier; Weihe Xu; Chang-Hwan Choi; K J Briston; B J Inkson; P Y Tessier
We report on an efficient strategy for the fabrication of an ultra-long suspended nanowire mesh suitable for nanodevice architectures on a polymer surface. First, nickel nanowires are synthesized directly on a template substrate by magnetron sputtering. Laser interference lithography followed by deep reactive ion etching is used to create the nanograted template substrate constituted of one-dimensional line pattern arrays of 240 nm in periodicity. Ordered alignment of ultra-long nanowires (∼180 nm in diameter) with high fidelity to the template pattern is observed by scanning electron microscopy. The transfer of the pre-defined parallel nanowire array from the template surface to a target polymer substrate for electrical characterization of the system is demonstrated. The electrical behaviour of the nanowire mesh, suspended between two electrodes, was found to be linear, stable, and reproducible. This result suggests that this nanofabrication process will open an efficient way to the design and construction of novel nanodevices.
Review of Scientific Instruments | 2013
En-Te Hwu; Evgeny Nazaretski; Yong S. Chu; Huang-Han Chen; Yu-Sheng Chen; Weihe Xu; Y. Hwu
We have designed and constructed a compact nano-positioning system for a Portable Transmission X-ray Microscope (PTXM). We introduce a concept of PTXM and adopt modular approach which implements identical nano-motion platforms to perform manipulation of PTXM components. Modular design provides higher stiffness of the system and allows for reduction of relative thermal drifts between individual constituents of the PTXM apparatus, ensuring a high degree of stability for nanoscale x-ray imaging. We have measured relative thermal drifts between two identical modules to be as low as 15 nm/h, sufficient to perform nanoscale imaging by TXM. Spatial resolution achieved by developed linear piezo stages was measured to be 3 nm with repeatability of 20 nm over 1 mm travel range.
Optics Express | 2017
Xiaojing Huang; Weihe Xu; Evgeny Nazaretski; Nathalie Bouet; Juan Zhou; Yong S. Chu; Hanfei Yan
We report scanning hard x-ray imaging with a monolithic focusing optic consisting of two multilayer Laue lenses (MLLs) bonded together. With optics pre-characterization and accurate control of the bonding process, we show that a common focal plane for both MLLs can be realized at 9.317 keV. Using bonded MLLs, we obtained a scanning transmission image of a star test pattern with a resolution of 50 × 50 nm2. By applying a ptychography algorithm, we obtained a probe size of 17 × 38 nm2 and an object image with a resolution of 13 × 13 nm2. The significant reduction in alignment complexity for bonded MLLs will greatly extend the application range in both scanning and full-field x-ray microscopies.
Nano Research | 2014
Weihe Xu; Evgeny Nazaretski; Ming Lu; Hamid Hadim; Yong Shi
AbstractThermoelectric oxide nanofibers prepared by electrospinning are expected to have reduced thermal conductivity when compared to bulk samples. Measurements of nanofibers’ thermal conductivity is challenging since it involves sophisticated sample preparation methods. In this work, we present a novel method suitable for measurements of thermal conductivity of a single nanofiber. A microelectro-mechanical (MEMS) device has been designed and fabricated to perform thermal conductivity measurements on a single nanofiber. A special Si template was designed to collect and transfer individual nanofibers onto a MEMS device. Pt was deposited by a focused ion beam to reduce the effective length of a prepared nanofiber. La0.95Sr0.05CoO3 nanofibers with diameters of 140 nm and 290 nm were studied and characterized using this approach at room temperature. Measured thermal conductivities yielded values of 0.7 W·m−1·K−1 and 2.1 W·m−1·K−1, respectively. Our measurements in La0.95Sr0.05CoO3 nanofibers confirmed that a decrease of linear dimensions has a profound effect on its thermal conductivity.
Proceedings of SPIE: RELIABILITY, PACKAGING, TESTING, AND CHARACTERIZATION OF MOEMS/MEMS, NANODEVICES, AND NANOMATERIALS XIII | 2014
Weihe Xu; Hamid Hadim; Yong S. Chu; Yong Shi; Evgeny Nazaretski
Thermoelectric oxide nanofibers prepared by electrospinning are expected to have reduced thermal conductivity when compared to bulk samples. Measurements of nanofibers’ thermal conductivity is challenging since it involves sophisticated sample preparation methods. In this work, we present a novel method suitable for measurements of thermal conductivity in a single nanofiber. A microelectro-mechanical (MEMS) device has been designed and fabricated to perform thermal conductivity measurements on a single nanofiber. A special Si template was designed to collect and transfer individual nanofibers onto a MEMS device. Pt was deposited by Focused Ion Beam to reduce the effective length of a prepared nanofiber. A single La0.95Sr0.05CoO3 nanofiber with a diameter of 140 nm was studied and characterized using this approach. Measured thermal conductivity of a nanofiber was determined to be 0.7 W/m•K, which is 23% of the value reported for bulk La0.95Sr0.05CoO3 samples.