Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wen-Hui Shen is active.

Publication


Featured researches published by Wen-Hui Shen.


Plant Physiology | 2010

Arabidopsis Histone Methyltransferase SET DOMAIN GROUP8 Mediates Induction of the Jasmonate/Ethylene Pathway Genes in Plant Defense Response to Necrotrophic Fungi

Alexandre Berr; Emily J. Mccallum; Abdelmalek Alioua; Dimitri Heintz; Thierry Heitz; Wen-Hui Shen

As sessile organisms, plants have to endure a wide variety of biotic and abiotic stresses, and accordingly they have evolved intricate and rapidly inducible defense strategies associated with the activation of a battery of genes. Among other mechanisms, changes in chromatin structure are thought to provide a flexible, global, and stable means for the regulation of gene transcription. In support of this idea, we demonstrate here that the Arabidopsis (Arabidopsis thaliana) histone methyltransferase SET DOMAIN GROUP8 (SDG8) plays a crucial role in plant defense against fungal pathogens by regulating a subset of genes within the jasmonic acid (JA) and/or ethylene signaling pathway. We show that the loss-of-function mutant sdg8-1 displays reduced resistance to the necrotrophic fungal pathogens Alternaria brassicicola and Botrytis cinerea. While levels of JA, a primary phytohormone involved in plant defense, and camalexin, a major phytoalexin against fungal pathogens, remain unchanged or even above normal in sdg8-1, induction of several defense genes within the JA/ethylene signaling pathway is severely compromised in response to fungal infection or JA treatment in mutant plants. Both downstream genes and, remarkably, also upstream mitogen-activated protein kinase kinase genes MKK3 and MKK5 are misregulated in sdg8-1. Accordingly, chromatin immunoprecipitation analysis shows that sdg8-1 impairs dynamic changes of histone H3 lysine 36 methylation at defense marker genes as well as at MKK3 and MKK5, which normally occurs upon infection with fungal pathogens or methyl JA treatment in wild-type plants. Our data indicate that SDG8-mediated histone H3 lysine 36 methylation may serve as a memory of permissive transcription for a subset of defense genes, allowing rapid establishment of transcriptional induction.


The Plant Cell | 2010

Arabidopsis SET DOMAIN GROUP2 Is Required for H3K4 Trimethylation and Is Crucial for Both Sporophyte and Gametophyte Development

Alexandre Berr; Emily J. Mccallum; Rozenn Menard; Denise Meyer; Jörg Fuchs; Aiwu Dong; Wen-Hui Shen

This study establishes that SDG2 is a major factor for histone 3 lysine 4 trimethylation in Arabidopsis and shows that loss of SDG2 causes wide-ranging defects in both sporophyte and gametophyte development. Histone H3 lysine 4 trimethylation (H3K4me3) is abundant in euchromatin and is in general associated with transcriptional activation in eukaryotes. Although some Arabidopsis thaliana SET DOMAIN GROUP (SDG) genes have been previously shown to be involved in H3K4 methylation, they are unlikely to be responsible for global genome-wide deposition of H3K4me3. Most strikingly, sparse knowledge is currently available about the role of histone methylation in gametophyte development. In this study, we show that the previously uncharacterized SDG2 is required for global H3K4me3 deposition and its loss of function causes wide-ranging defects in both sporophyte and gametophyte development. Transcriptome analyses of young flower buds have identified 452 genes downregulated by more than twofold in the sdg2-1 mutant; among them, 11 genes, including SPOROCYTELESS/NOZZLE (SPL/NZZ) and MALE STERILITY1 (MS1), have been previously shown to be essential for male and/or female gametophyte development. We show that both SPL/NZZ and MS1 contain bivalent chromatin domains enriched simultaneously with the transcriptionally active mark H3K4me3 and the transcriptionally repressive mark H3K27me3 and that SDG2 is specifically required for the H3K4me3 deposition. Our data suggest that SDG2-mediated H3K4me3 deposition poises SPL/NZZ and MS1 for transcriptional activation, forming a key regulatory mechanism in the gene networks responsible for gametophyte development.


The Plant Cell | 2006

Arabidopsis NRP1 and NRP2 Encode Histone Chaperones and Are Required for Maintaining Postembryonic Root Growth

Yan Zhu; Aiwu Dong; Denise Meyer; Olivier Pichon; Jean-Pierre Renou; Kaiming Cao; Wen-Hui Shen

NUCLEOSOME ASSEMBLY PROTEIN1 (NAP1) is conserved from yeast to human and was proposed to act as a histone chaperone. While budding yeast contains a single NAP1 gene, multicellular organisms, including plants and animals, contain several NAP1 and NAP1-RELATED PROTEIN (NRP) genes. However, the biological role of these genes has been largely unexamined. Here, we show that, in Arabidopsis thaliana, simultaneous knockout of the two NRP genes, NRP1 and NRP2, impaired postembryonic root growth. In the nrp1-1 nrp2-1 double mutant, arrest of cell cycle progression at G2/M and disordered cellular organization occurred in root tips. The mutant seedlings exhibit perturbed expression of ∼100 genes, including some genes involved in root proliferation and patterning. The mutant plants are highly sensitive to genotoxic stress and show increased levels of DNA damage and the release of transcriptional gene silencing. NRP1 and NRP2 are localized in the nucleus and can form homomeric and heteromeric protein complexes. Both proteins specifically bind histones H2A and H2B and associate with chromatin in vivo. We propose that NRP1 and NRP2 act as H2A/H2B chaperones in the maintenance of dynamic chromatin in epigenetic inheritance.


Cell Research | 2010

The Arabidopsis PRC1-like ring-finger proteins are necessary for repression of embryonic traits during vegetative growth

Donghong Chen; Anne Molitor; Chunlin Liu; Wen-Hui Shen

Polycomb group genes play crucial roles in the maintenance of the transcriptionally silenced state of genes for proper cell differentiation in animals and plants. While components of the polycomb repressive complex2 (PRC2) are evolutionarily conserved and their functions are extensively studied in plants, PRC1 differs considerably between animals and plants, and its functions in plants are as yet not well described. Previous studies have identified the Arabidopsis AtRING1a and AtRING1b as homologues of the animal PRC1 subunit RING1. Here, we show that the Atring1a Atring1b double mutant exhibits derepression of embryonic traits during vegetative growth. Accordingly, several key regulatory genes involved in embryogenesis and stem cell activity are ectopically expressed in the mutant. Furthermore, we show that the mutant phenotypes and increased expression of regulatory genes are enhanced by the PRC2 mutant clf. Finally, we show that three homologues of the animal PRC1-subunit ring-finger protein BMI1, AtBMI1a, AtBMI1b and AtBMI1c, can bind with AtRING1a or AtRING1b, and in addition, AtBMI1c can bind with LHP1. The Atbmi1a Atbmi1b double mutant shows derepression of embryonic traits similar to that of the Atring1a Atring1b double mutant. Interestingly, expression levels of AtBMI1a, AtBMI1b and AtBMI1c are elevated in the Atring1a Atring1b mutant and those of AtBMI1c, AtRING1a and AtRING1b are elevated in the Atbmi1a Atbmi1b mutant, suggesting a self-regulatory feedback mechanism. Taken together, our results illuminate crucial functions of the PRC1-like ring-finger components in stable repression of embryonic traits and regulatory genes for proper somatic growth.


PLOS Genetics | 2014

Arabidopsis AL PHD-PRC1 complexes promote seed germination through H3K4me3-to-H3K27me3 chromatin state switch in repression of seed developmental genes.

Anne Molitor; Zhongyuan Bu; Yu Yu; Wen-Hui Shen

Seed germination and subsequent seedling growth define crucial steps for entry into the plant life cycle. For those events to take place properly, seed developmental genes need to be silenced whereas vegetative growth genes are activated. Chromatin structure is generally known to play crucial roles in gene transcription control. However, the transition between active and repressive chromatin states during seed germination is still poorly characterized and the underlying molecular mechanisms remain largely unknown. Here we identified the Arabidopsis PHD-domain H3K4me3-binding ALFIN1-like proteins (ALs) as novel interactors of the Polycomb Repressive Complex 1 (PRC1) core components AtBMI1b and AtRING1a. The interactions were confirmed by diverse in vitro and in vivo assays and were shown to require the AL6 N-terminus containing PAL domain conserved in the AL family proteins and the AtRING1a C-terminus containing RAWUL domain conserved in animal and plant PRC1 ring-finger proteins (including AtRNIG1a/b and AtBMI1a/b). By T-DNA insertion mutant analysis, we found that simultaneous loss of AL6 and AL7 as well as loss of AtBMI1a and AtBMI1b retards seed germination and causes transcriptional derepression and a delayed chromatin state switch from H3K4me3 to H3K27me3 enrichment of several seed developmental genes (e.g. ABI3, DOG1, CRU3, CHO1). We found that AL6 and the PRC1 H3K27me3-reader component LHP1 directly bind at ABI3 and DOG1 loci. In light of these data, we propose that AL PHD-PRC1 complexes, built around H3K4me3, lead to a switch from the H3K4me3-associated active to the H3K27me3-associated repressive transcription state of seed developmental genes during seed germination. Our finding of physical interactions between PHD-domain proteins and PRC1 is striking and has important implications for understanding the connection between the two functionally opposite chromatin marks: H3K4me3 in activation and H3K27me3 in repression of gene transcription.


Plant Physiology | 2009

SET DOMAIN GROUP25 Encodes a Histone Methyltransferase and Is Involved in FLOWERING LOCUS C Activation and Repression of Flowering

Alexandre Berr; Lin Xu; Juan Gao; Valérie Cognat; André Steinmetz; Aiwu Dong; Wen-Hui Shen

Covalent modifications of histone lysine residues by methylation play key roles in the regulation of chromatin structure and function. In contrast to H3K9 and H3K27 methylations that mark repressive states of transcription and are absent in some lower eukaryotes, H3K4 and H3K36 methylations are considered as active marks of transcription and are highly conserved in all eukaryotes from yeast (Saccharomyces cerevisiae) to Homo sapiens. Paradoxically, protein complexes catalyzing H3K4 and H3K36 methylations are less-extensively characterized in higher eukaryotes, particularly in plants. Arabidopsis (Arabidopsis thaliana) contains 12 SET DOMAIN GROUP (SDG) proteins phylogenetic classified to Trithorax Group (TrxG) and thus potentially involved in H3K4 and H3K36 methylations. So far only some genes of this family had been functionally characterized. Here we report on the genetic and molecular characterization of SDG25, a previously uncharacterized member of the Arabidopsis TrxG family. We show that the loss-of-function mutant sdg25-1 has an early flowering phenotype associated with suppression of FLOWERING LOCUS C (FLC) expression. Recombinant SDG25 proteins could methylate histone H3 from oligonucleosomes and mutant sdg25-1 plants showed weakly reduced levels of H3K36 dimethylation at FLC chromatin. Interestingly, sdg25-1 transcriptome shared a highly significant number of differentially expressed genes with that of sdg26-1, a previously characterized mutant exhibiting late-flowering phenotype and elevated FLC expression. Taken together, our results provide, to our knowledge, the first demonstration for a biological function of SDG25 and reveal additional layers of complexity of overlap and nonoverlap functions of the TrxG family genes in Arabidopsis.


Molecular Plant | 2009

Chromatin Remodeling in Stem Cell Maintenance in Arabidopsis thaliana

Wen-Hui Shen; Lin Xu

Pluripotent stem cells are able to both self-renew and generate undifferentiated cells for the formation of new tissues and organs. In higher plants, stem cells found in the shoot apical meristem (SAM) and the root apical meristem (RAM) are origins of organogenesis occurring post-embryonically. It is important to understand how the regulation of stem cell fate is coordinated to enable the meristem to constantly generate different types of lateral organs. Much knowledge has accumulated on specific transcription factors controlling SAM and RAM activity. Here, we review recent evidences for a role of chromatin remodeling in the maintenance of stable expression states of transcription factor genes and the control of stem cell activity in Arabidopsis.


Biochimica et Biophysica Acta | 2012

Histone variants and chromatin assembly in plant abiotic stress responses.

Yan Zhu; Aiwu Dong; Wen-Hui Shen

Genome organization into nucleosomes and higher-order chromatin structures has profound implications for the regulation of gene expression, DNA replication and repair. The structure of chromatin can be remodeled by several mechanisms; among others, nucleosome assembly/disassembly and replacement of canonical histones with histone variants constitute important ones. In this review, we provide a brief description on the current knowledge about histone chaperones involved in nucleosome assembly/disassembly and histone variants in Arabidopsis thaliana. We discuss recent advances in revealing crucial functions of histone chaperones, nucleosome assembly/disassembly and histone variants in plant response to abiotic stresses. It appears that chromatin structure remodeling may provide a flexible, global and stable means for the regulation of gene transcription to help plants more effectively cope with environmental stresses. This article is part of a Special Issue entitled: Histone chaperones and chromatin assembly.


Plant Physiology | 2005

Interacting Proteins and Differences in Nuclear Transport Reveal Specific Functions for the NAP1 Family Proteins in Plants

Aiwu Dong; Ziqiang Liu; Yan Zhu; Fang Yu; Ziyu Li; Kaiming Cao; Wen-Hui Shen

Nucleosome assembly protein 1 (NAP1) is conserved from yeast to human and facilitates the in vitro assembly of nucleosomes as a histone chaperone. Inconsistent with their proposed function in the nucleus, however, many NAP1 proteins had been reported to localize in the cytoplasm. We investigated the subcellular localization of tobacco (Nicotiana tabacum) and rice (Oryza sativa) NAP1 family proteins first by identification of interacting partners and by direct examination of the localization of green fluorescent protein-tagged proteins. Through treatment of tobacco cells with leptomycin B and mutagenesis of nuclear export signal, we demonstrated that Nicta;NAP1;1 and Orysa;NAP1;1 shuttle between the cytoplasm and the nucleus. Together with the demonstration that tobacco NAP1 proteins bind histone H2A and H2B, our results support the current model and provide additional evidence that function of NAP1 as histone chaperones appears to be conserved in plants. In addition, we show that tobacco NAP1 proteins interact with tubulin and the mitotic cyclin Nicta;CYCB1;1, suggesting a role for NAP1 in microtubule dynamics. Interestingly, in spite of their high homology with the above NAP1 proteins, the other three tobacco proteins and Orysa;NAP1;2 did not show nucleocytoplasmic shuttling and were localized only in the cytoplasm. Moreover, Orysa;NAP1;3 that lacks a typical nuclear localization signal sequence was localized in both the cytoplasm and the nucleus. Finally, we show that only Orysa;NAP1;3 could be phosphorylated by casein kinase 2α in vitro. However, this phosphorylation was not responsible for nuclear import of Orysa;NAP1;3 as being demonstrated through mutagenesis studies. Together, our results provide an important step toward elucidating the molecular mechanism of function of the NAP1 family proteins in plants.


Plant Journal | 2012

H3K36 methylation is critical for brassinosteroid-regulated plant growth and development in rice.

Pengfei Sui; Jing Jin; Sheng Ye; Chen Mu; Juan Gao; Haiyang Feng; Wen-Hui Shen; Yu Yu; Aiwu Dong

Methylation of histone lysine residues plays an essential role in epigenetic regulation of gene expression in eukaryotes. Enzymes involved in establishment of the repressive H3K9 and H3K27 methylation marks have been previously characterized, but the deposition and function of H3K4 and H3K36 methylation remain uncharacterized in rice. Here, we report that rice SDG725 encodes a H3K36 methyltransferase, and its down-regulation causes wide-ranging defects, including dwarfism, shortened internodes, erect leaves and small seeds. These defects resemble the phenotypes previously described for some brassinosteroid-knockdown mutants. Consistently, transcriptome analyses revealed that SDG725 depletion results in down-regulation by more than two-fold of over 1000 genes, including D11, BRI1 and BU1, which are known to be involved in brassinosteroid biosynthesis or signaling pathways. Chromatin immunoprecipitation analyses showed that levels of H3K36me2/3 are reduced in chromatin at some regions of these brassinosteroid-related genes in SDG725 knockdown plants, and that SDG725 protein is able to directly bind to these target genes. Taken together, our data indicate that SDG725-mediated H3K36 methylation modulates brassinosteroid-related gene expression, playing an important role in rice plant growth and development.

Collaboration


Dive into the Wen-Hui Shen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandre Berr

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Ruan

Hunan Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pascal Genschik

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Chunlin Liu

Hunan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Donghong Chen

Hunan Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge