Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weng-Onn Lui is active.

Publication


Featured researches published by Weng-Onn Lui.


International Journal of Oncology | 2011

miR-185 and miR-133b deregulation is associated with overall survival and metastasis in colorectal cancer.

Pinar Akçakaya; Susanne Ekelund; Iryna Kolosenko; Stefano Caramuta; Deniz Mahmut Özata; Hong Xie; Ulrik Lindforss; Hans Olivecrona; Weng-Onn Lui

Colorectal cancer (CRC) is one of the most common and deadly forms of cancer. Despite improved treatment modalities, post-operative recurrence and metastasis remain the major problems for extending patient survival after surgery. This highlights the need to search for biomarkers for prognostication and treatment stratification of colorectal cancer patients. In this study, we applied the SYBR-green quantitative PCR-based array approach to screen for differentially expressed miRNAs between patients with short (<50 months, range 10-33 months) and long survival (≥ 50 months, range 50-152 months). The selected candidate prognostic miRNAs were validated in a cohort of 50 CRC patients by TaqMan quantitative PCR. We found that high expression of miR-185 and low expression of miR-133b were correlated with poor survival (p=0.001 and 0.028, respectively) and metastasis (p=0.007 and 0.036, respectively) in colorectal cancer. Our findings suggest the potential prognostic values of these miRNAs for predicting clinical outcome after surgery.


Oncogene | 2006

The insulin-like growth factor-1 receptor inhibitor PPP produces only very limited resistance in tumor cells exposed to long-term selection

Daiana Vasilcanu; Wen-Hui Weng; Ada Girnita; Weng-Onn Lui; Radu Vasilcanu; Magnus Axelson; Olle Larsson; Catharina Larsson; Leonard Girnita

The cyclolignan PPP was recently demonstrated to inhibit the activity of insulin-like growth factor-1 receptor (IGF-1R), without affecting the highly homologous insulin receptor. In addition, PPP caused complete regression of xenografts derived from various types of cancer. These data highlight the use of this compound in cancer treatment. However, a general concern with antitumor agents is development of resistance. In light of this problem, we aimed to investigate whether malignant cells may develop serious resistance to PPP. After trying to select 10 malignant cell lines, with documented IGF-1R expression and apoptotic responsiveness to PPP treatment (IC50s less than 0.1u2009μM), only two survived an 80-week selection but could only tolerate maximal PPP doses of 0.2 and 0.5u2009μM, respectively. Any further increase in the PPP dose resulted in massive cell death. These two cell lines were demonstrated not to acquire any essential alteration in responsiveness to PPP regarding IGF-1-induced IGF-1R phosphorylation. Neither did they exhibit any increase in expression of the multidrug resistance proteins MDR1 or MRP1. Consistently, they did not exhibit decreased sensitivity to conventional cytostatic drugs. Rather, the sensitivity was increased. During the first half of the selection period, both cell lines responded with a temporary and moderate increase in IGF-1R expression, which appeared to be because of an increased transcription of the IGF-1R gene. This increase in IGF-1R might be necessary to make cells competent for further selection but only up to a PPP concentration of 0.2 and 0.5u2009μM. In conclusion, malignant cells develop no or remarkably weak resistance to the IGF-1R inhibitor PPP.


Endocrine-related Cancer | 2013

Clinical and functional impact of TARBP2 over-expression in adrenocortical carcinoma

Stefano Caramuta; Linkiat Lee; Deniz Mahmut Özata; Pinar Akçakaya; Hong Xie; Anders Höög; Jan Zedenius; Catharina Larsson; Weng-Onn Lui

Deregulation of microRNA (miRNA) expression in adrenocortical carcinomas (ACCs) has been documented to have diagnostic, prognostic, as well as functional implications. Here, we evaluated the mRNA expression of DROSHA, DGCR8, DICER (DICER1), TARBP2, and PRKRA, the core components in the miRNA biogenesis pathway, in a cohort of 73 adrenocortical tumors (including 43 adenomas and 30 carcinomas) and nine normal adrenal cortices using a RT-qPCR approach. Our results show a significant over-expression of TARBP2, DICER, and DROSHA in the carcinomas compared with adenomas or adrenal cortices (P<0.001 for all comparisons). Using western blot and immunohistochemistry analyses, we confirmed the higher expression of TARBP2, DICER, and DROSHA at the protein level in carcinoma cases. Furthermore, we demonstrate that mRNA expression of TARBP2, but not DICER or DROSHA, is a strong molecular predictor to discriminate between adenomas and carcinomas. Functionally, we showed that inhibition of TARBP2 expression in human NCI-H295R ACC cells resulted in a decreased cell proliferation and induction of apoptosis. TARBP2 over-expression was not related to gene mutations; however, copy number gain of the TARBP2 gene was observed in 57% of the carcinomas analyzed. In addition, we identified that miR-195 and miR-497 could directly regulate TARBP2 and DICER expression in ACC cells. This is the first study to demonstrate the deregulation of miRNA-processing factors in adrenocortical tumors and to show the clinical and biological impact of TARBP2 over-expression in this tumor type.


PLOS ONE | 2014

Detection of Circulating hcmv-miR-UL112-3p in Patients with Glioblastoma, Rheumatoid Arthritis, Diabetes Mellitus and Healthy Controls

Abdul-Aleem Mohammad; Afsar Rahbar; Weng-Onn Lui; Belghis Davoudi; Anca Irinel Catrina; Giuseppe Stragliotto; Linda Mellbin; Anders Hamsten; Lars Rydén; Koon-Chu Yaiw; Cecilia Söderberg-Nauclér

Background microRNAs (miRNA) are 18–22 nucleotides long non-coding RNAs that regulate gene expression at a post-transcriptional level. Human cytomegalovirus (HCMV) encodes at least 26 known mature miRNAs. hcmv-miR-UL112-3p (miR-UL112-3p) is the most well characterized HCMV miRNA, which is suggested to play role in establishment and maintenance of viral latency. Elevated miR-UL112-3p levels have been reported to be present in plasma of patients with hypertension. Objectives In this study, we aimed to quantify miR-UL112-3p levels in the plasma/serum of patients with Diabetes Mellitus (DM; from the DIGAMI-2 cohort), Glioblastoma multiforme (GBM), Rheumatoid Arthritis (RA) and Healthy Controls (HC). Study Design Total RNA was isolated from plasma/serum samples of 87 patients and controls, a TaqMan miRNA assay was performed to detect miR-UL112-3p and the copy numbers were normalized to 10 ng of total RNA. HCMV IgG and IgM were analysed using ELISA. Results HCMV miR-UL112-3p was detected in 14/27 (52%) of DM, 5/20 (25%) of GBM, 1/20 (5%) of RA patients and in 2/20 (10%) of HC, respectively. Anti-HCMV IgG was detected in 85%, 65%, 75% of patients and 70% of HC, respectively. Anti-HCMV IgM was found only in one GBM patient of 87 examined patients and controls. Conclusions A higher prevalence of miR-UL112-3p was detected in DM and GBM patients than in RA patients and HC. Elevated levels of miR-UL112-3p and higher prevalence of HCMV IgG were observed in DM patients. Whether the presence of circulating miR-UL112-3p denotes a biomarker of HCMV latency or active replication in patients warrants further investigation.


PLOS ONE | 2011

Molecular Characterization of Acquired Tolerance of Tumor Cells to Picropodophyllin (PPP)

Jamileh Hashemi; C. Worrall; Daiana Vasilcanu; Mårten Fryknäs; Luqman Sulaiman; Mohsen Karimi; Wen-Hui Weng; Weng-Onn Lui; Christina Rudduck; Magnus Axelson; Helena Jernberg-Wiklund; Leonard Girnita; Olle Larsson; Catharina Larsson

Background Picropodophyllin (PPP) is a promising novel anti-neoplastic agent that efficiently kills tumor cells in vitro and causes tumor regression and increased survival in vivo. We have previously reported that PPP treatment induced moderate tolerance in two out of 10 cell lines only, and here report the acquired genomic and expression alterations associated with PPP selection over 1.5 years of treatment. Methodology/Principal Findings Copy number alterations monitored using metaphase and array-based comparative genomic hybridization analyses revealed largely overlapping alterations in parental and maximally tolerant cells. Gain/ amplification of the MYC and PVT1 loci in 8q24.21 were verified on the chromosome level. Abnormalities observed in connection to PPP treatment included regular gains and losses, as well as homozygous losses in 10q24.1-q24.2 and 12p12.3-p13.2 in one of the lines and amplification at 5q11.2 in the other. Abnormalities observed in both tolerant derivatives include amplification/gain of 5q11.2, gain of 11q12.1-q14.3 and gain of 13q33.3-qter. Using Nexus software analysis we combined the array-CGH data with data from gene expression profilings and identified genes that were altered in both inputs. A subset of genes identified as downregulated (ALDH1A3, ANXA1, TLR4 and RAB5A) or upregulated (COX6A1, NFIX, ME1, MAPK and TAP2) were validated by siRNA in the tolerant or parental cells to alter sensitivity to PPP and confirmed to alter sensitivity to PPP in further cell lines. Conclusions Long-term PPP selection lead to altered gene expression in PPP tolerant cells with increase as well as decrease of genes involved in cell death such as PTEN and BCL2. In addition, acquired genomic copy number alterations were observed that were often reflected by altered mRNA expression levels for genes in the same regions.


Developmental Biology | 2013

miR-128 regulates non-myocyte hyperplasia, deposition of extracellular matrix and Islet1 expression during newt cardiac regeneration.

Nevin Witman; Jana Heigwer; Barbara Thaler; Weng-Onn Lui; Jamie Ian Morrison

Cardiovascular disease is a global scourge to society, with novel therapeutic approaches required in order to alleviate the suffering caused by sustained cardiac damage. MicroRNAs (miRNAs) are being touted as one such approach in the fight against heart disease, acting as possible post-transcriptional molecular triggers responsible for invoking cardiac regeneration. To further ones understanding of miRNAs and cardiac regeneration, it is prudent to learn from organisms that can intrinsically regenerate their hearts following injury. Using the red-spotted newt, an adult chordate capable of cardiac regeneration, we decided to delve deeper into the role miRNAs play during this process. RNA isolated from regenerating newt heart samples, was used in a microarray screen, to identify significantly expressed candidate miRNAs during newt cardiac regeneration. We performed quantitative qPCR analysis on several conserved miRNAs and found one in particular, miR-128, to be significantly elevated when cardiac hyperplasia is at its peak following injury. In-situ hybridisation techniques revealed a localised expression pattern for miR-128 in the cardiomyocytes and non-cardiomyocytes in close proximity to the regeneration zone and in vivo knockdown studies revealed a regulatory role for miR-128 in proliferating non-cardiomyocyte populations and extracellular matrix deposition. Finally, 3UTR reporter assays revealed Islet1 as a biological target for miR-128, which was confirmed further through in vivo Islet1 transcriptional and translational expression analysis in regenerating newt hearts. From these studies we conclude that miR-128 regulates both cardiac hyperplasia and Islet1 expression during newt heart regeneration and that this information could be translated into future mammalian cardiac studies.


European Journal of Endocrinology | 2014

MicroRNA expression patterns associated with hyperfunctioning and non-hyperfunctioning phenotypes in adrenocortical adenomas

David Velázquez-Fernández; Stefano Caramuta; Deniz Mahmut Özata; Ming Lu; Anders Höög; Catharina Larsson; Weng-Onn Lui; Jan Zedenius

BACKGROUNDnThe adrenocortical adenoma (ACA) entity includes aldosterone-producing adenoma (APA), cortisol-producing adenoma (CPA), and non-hyperfunctioning adenoma (NHFA) phenotypes. While gene mutations and mRNA expression profiles have been partly characterized, less is known about the alterations involving microRNA (miRNA) expression.nnnAIMnTo characterize miRNA expression profile in relation to the subtypes of ACAs.nnnSUBJECTS AND METHODSnmiRNA expression profiles were determined in 26 ACAs (nine APAs, ten CPAs, and seven NHFAs) and four adrenal references using microarray-based screening. Significance analysis of microarrays (SAM) was carried out to identify differentially expressed miRNAs between ACA and adrenal cortices or between tumor subtypes. Selected differentially expressed miRNAs were validated in an extended series of 43 ACAs and ten adrenal references by quantitative RT-PCR.nnnRESULTSnAn hierarchical clustering revealed separate clusters for APAs and CPAs, while the NHFAs were found spread out within the APA/CPA clusters. When NHFA was excluded, the clustering analysis showed a better separation between APA and CPA. SAM analysis identified 40 over-expressed and three under-expressed miRNAs in the adenomas as compared with adrenal references. Fourteen miRNAs were common among the three ACA subtypes. Furthermore, we found specific miRNAs associated with different tumor phenotypes.nnnCONCLUSIONnThe results suggest that miRNA expression profiles can distinguish different subtypes of ACA, which may contribute to a deeper understanding of ACA development and potential therapeutics.


Experimental Cell Research | 2013

Evidence for Ca2+-regulated ATP release in gastrointestinal stromal tumors

Erik Berglund; David Berglund; Pinar Akçakaya; Mehran Ghaderi; Elisabetta Daré; Per-Olof Berggren; Martin Köhler; Craig A. Aspinwall; Weng-Onn Lui; Jan Zedenius; Catharina Larsson; Robert Bränström

Gastrointestinal stromal tumors (GISTs) are thought to originate from the electrically active pacemaker cells of the gastrointestinal tract. Despite the presence of synaptic-like vesicles and proteins involved in cell secretion it remains unclear whether GIST cells possess regulated release mechanisms. The GIST tumor cell line GIST882 was used as a model cell system, and stimulus-release coupling was investigated by confocal microscopy of cytoplasmic free Ca(2+) concentration ([Ca(2+)]i), flow cytometry, and luminometric measurements of extracellular ATP. We demonstrate that GIST cells have an intact intracellular Ca(2+)-signaling pathway that regulates ATP release. Cell viability and cell membrane integrity was preserved, excluding ATP leakage due to cell death and suggesting active ATP release. The stimulus-secretion signal transduction is at least partly dependent on Ca(2+) influx since exclusion of extracellular Ca(2+) diminishes the ATP release. We conclude that measurements of ATP release in GISTs may be a useful tool for dissecting the signal transduction pathway, mapping exocytotic components, and possibly for the development and evaluation of drugs. Additionally, release of ATP from GISTs may have importance for tumor tissue homeostasis and immune surveillance escape.


PLOS ONE | 2016

Tissue and Serum miRNA Profile in Locally Advanced Breast Cancer (LABC) in Response to Neo-Adjuvant Chemotherapy (NAC) Treatment.

Manal Al-Khanbashi; Stefano Caramuta; Adil Al-Ajmi; Ibrahim Al-Haddabi; Marwa Al-Riyami; Weng-Onn Lui; Mansour Al-Moundhri

Introduction MicroRNAs (miRNAs) are small non-coding RNA that plays a vital role in cancer progression. Neo-adjuvant chemotherapy (NAC) has become the standard of care for locally advanced breast cancer. The aim of this study was to evaluate miRNA alterations during NAC using multiple samples of tissue and serum to correlate miRNA expression with clinico-pathological features and patient outcomes. Methods Tissue and serum samples were collected from patients with locally advanced breast cancer undergoing NAC at four time points: time of diagnosis, after the first and fourth cycle of doxorubicin/cyclophosphamide treatment, and after the fourth cycle of docetaxel administration. First, we evaluated the miRNA expression profiles in tissue and correlated expression with clinico-pathological features. Then, a panel of four miRNAs (miR-451, miR-3200, miR-21, and miR-205) in serum samples was further validated using quantitative reverse-transcription polymerase chain reaction (RT-qPCR). The alterations in serum levels of miRNA, associations with clinical and pathological responses, correlation with clinico-pathological features, and survival outcomes were studied using Friedman, Mann-Whitney U, and Spearman, Wilcoxon signed-ranks tests. P≤0.05 was considered statistically significant. Results We analyzed 72 tissue samples and 108 serum samples from 9 patients and 27 patients, respectively. MicroRNA expression profiling of tumor versus normal tissue revealed more than 100 differentially expressed miRNAs. Serum miR-451 levels were significantly decreased during treatment, and higher serum levels were associated with improved clinical and pathological responses and disease-free survival. This is one of the early reports on miR-3200 in response to treatment in breast cancer, as serum levels of miR-3200 found to decline during NAC, and higher serum levels were associated with lower residual breast cancer burden and relapse rates at time of diagnosis. Conclusion Variations in serum miRNA levels during NAC treatment may be therapeutically significant for predicting response and survival outcomes.


Journal of General Virology | 2017

Human cytomegalovirus microRNAs are carried by virions and dense bodies and are delivered to target cells

Abdul-Aleem Mohammad; Helena Costa; Natalia Landázuri; Weng-Onn Lui; Kjell Hultenby; Afsar Rahbar; Koon-Chu Yaiw; Cecilia Söderberg-Nauclér

Human cytomegalovirus (HCMV) infection results in the production of virions, dense bodies (DBs) and non-infectious enveloped particles, all of which incorporate proteins and RNAs that can be transferred to host cells. Here, we investigated whether virions and DBs also carry microRNAs (miRNAs) and assessed their delivery and functionality in cells. Human lung fibroblasts (MRC-5) were infected with the HCMV strain AD169, and conditioned cell culture medium was collected and centrifuged. The pellets were treated with RNase-ONE, and the virions and DBs were purified with a potassium tartrate–glycerol gradient and dialysed. The virions and DBs were incubated with micrococcal nuclease, DNA and RNA were extracted and then analysed with TaqMan PCR assays, while the proteins were examined with Western blots. To assess the delivery of miRNAs to cells and their functionality, virions and DBs were irradiated with UV light. The purity of the virions and DBs was confirmed by typical morphology, the presence of the structural protein pp65 and the HCMV genome, the ability to infect MRC-5 cells and the absence of the host genome. RNA analysis revealed the presence of 14 HCMV-encoded miRNAs (UL22A-5p, US25-1-5p, UL22A-3p, US5-2-3p, UL112-3p, US25-2-3p, US25-2-5p, US33-3p, US5-1, UL36-5p, US4-5p, UL36-3p, UL70-5p and US25-1-3p), HCMV immediate-early mRNA and long non-coding RNA2.7, moreover, two host-encoded miRNAs (hsa-miR-218-5p and hsa-miR-21-5p) and beta-2-microglobulin RNA. UV-irradiated virions and DBs delivered viral miRNAs (US25-1-5p and UL112-3p) to the host cells, and miR-US25-1-5p was functional in a luciferase reporter assay. We conclude that virions and DBs carry miRNAs that are biologically functional and can be delivered to cells, which may affect cellular processes.

Collaboration


Dive into the Weng-Onn Lui's collaboration.

Top Co-Authors

Avatar

Catharina Larsson

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefano Caramuta

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Deniz Mahmut Özata

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Pinar Akçakaya

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Anders Höög

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge