Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefano Caramuta is active.

Publication


Featured researches published by Stefano Caramuta.


Endocrine-related Cancer | 2011

The role of microRNA deregulation in the pathogenesis of adrenocortical carcinoma

Deniz Mahmut Özata; Stefano Caramuta; David Velázquez-Fernández; Pinar Akçakaya; Hong Xie; Anders Höög; Jan Zedenius; Catharina Larsson; Weng-Onn Lui

Adrenocortical carcinoma (ACC) is an aggressive tumor showing frequent metastatic spread and poor survival. Although recent genome-wide studies of ACC have contributed to our understanding of the disease, major challenges remain for both diagnostic and prognostic assessments. The aim of this study was to identify specific microRNAs (miRNAs) associated with malignancy and survival of ACC patients. miRNA expression profiles were determined in a series of ACC, adenoma, and normal cortices using microarray. A subset of miRNAs showed distinct expression patterns in the ACC compared with adrenal cortices and adenomas. Among others, miR-483-3p, miR-483-5p, miR-210, and miR-21 were found overexpressed, while miR-195, miR-497, and miR-1974 were underexpressed in ACC. Inhibition of miR-483-3p or miR-483-5p and overexpression of miR-195 or miR-497 reduced cell proliferation in human NCI-H295R ACC cells. In addition, downregulation of miR-483-3p, but not miR-483-5p, and increased expression of miR-195 or miR-497 led to significant induction of cell death. Protein expression of p53 upregulated modulator of apoptosis (PUMA), a potential target of miR-483-3p, was significantly decreased in ACC, and inversely correlated with miR-483-3p expression. In addition, high expression of miR-503, miR-1202, and miR-1275 were found significantly associated with shorter overall survival among patients with ACC (P values: 0.006, 0.005, and 0.042 respectively). In summary, we identified additional miRNAs associated with ACC, elucidated the functional role of four miRNAs in the pathogenesis of ACC cells, demonstrated the potential involvement of the pro-apoptotic factor PUMA (a miR-483-3p target) in adrenocortical tumors, and found novel miRNAs associated with survival in ACC.


PLOS ONE | 2012

Comprehensive Re-Sequencing of Adrenal Aldosterone Producing Lesions Reveal Three Somatic Mutations near the KCNJ5 Potassium Channel Selectivity Filter

Tobias Åkerström; Joakim Crona; Alberto Delgado Verdugo; Lee F. Starker; Kenko Cupisti; Holger S. Willenberg; Wolfram T. Knoefel; Wolfgang Saeger; Alfred Feller; Julian Ip; Patsy S. Soon; Martin Anlauf; Pier Francesco Alesina; Kurt Werner Schmid; Myriam Decaussin; Pierre Levillain; Bo Wängberg; Jean-Louis Peix; Bruce G. Robinson; Jan Zedenius; Stefano Caramuta; K. Alexander Iwen; Johan Botling; Peter Stålberg; Jean-Louis Kraimps; Henning Dralle; Per Hellman; Stan B. Sidhu; Gunnar Westin; Hendrik Lehnert

Background Aldosterone producing lesions are a common cause of hypertension, but genetic alterations for tumorigenesis have been unclear. Recently, either of two recurrent somatic missense mutations (G151R or L168R) was found in the potassium channel KCNJ5 gene in aldosterone producing adenomas. These mutations alter the channel selectivity filter and result in Na+ conductance and cell depolarization, stimulating aldosterone production and cell proliferation. Because a similar mutation occurs in a Mendelian form of primary aldosteronism, these mutations appear to be sufficient for cell proliferation and aldosterone production. The prevalence and spectrum of KCNJ5 mutations in different entities of adrenocortical lesions remain to be defined. Materials and Methods The coding region and flanking intronic segments of KCNJ5 were subjected to Sanger DNA sequencing in 351 aldosterone producing lesions, from patients with primary aldosteronism and 130 other adrenocortical lesions. The specimens had been collected from 10 different worldwide referral centers. Results G151R or L168R somatic mutations were identified in 47% of aldosterone producing adenomas, each with similar frequency. A previously unreported somatic mutation near the selectivity filter, E145Q, was observed twice. Somatic G151R or L168R mutations were also found in 40% of aldosterone producing adenomas associated with marked hyperplasia, but not in specimens with merely unilateral hyperplasia. Mutations were absent in 130 non-aldosterone secreting lesions. KCNJ5 mutations were overrepresented in aldosterone producing adenomas from female compared to male patients (63 vs. 24%). Males with KCNJ5 mutations were significantly younger than those without (45 vs. 54, respectively; p<0.005) and their APAs with KCNJ5 mutations were larger than those without (27.1 mm vs. 17.1 mm; p<0.005). Discussion Either of two somatic KCNJ5 mutations are highly prevalent and specific for aldosterone producing lesions. These findings provide new insight into the pathogenesis of primary aldosteronism.


International Journal of Oncology | 2011

miR-185 and miR-133b deregulation is associated with overall survival and metastasis in colorectal cancer.

Pinar Akçakaya; Susanne Ekelund; Iryna Kolosenko; Stefano Caramuta; Deniz Mahmut Özata; Hong Xie; Ulrik Lindforss; Hans Olivecrona; Weng-Onn Lui

Colorectal cancer (CRC) is one of the most common and deadly forms of cancer. Despite improved treatment modalities, post-operative recurrence and metastasis remain the major problems for extending patient survival after surgery. This highlights the need to search for biomarkers for prognostication and treatment stratification of colorectal cancer patients. In this study, we applied the SYBR-green quantitative PCR-based array approach to screen for differentially expressed miRNAs between patients with short (<50 months, range 10-33 months) and long survival (≥ 50 months, range 50-152 months). The selected candidate prognostic miRNAs were validated in a cohort of 50 CRC patients by TaqMan quantitative PCR. We found that high expression of miR-185 and low expression of miR-133b were correlated with poor survival (p=0.001 and 0.028, respectively) and metastasis (p=0.007 and 0.036, respectively) in colorectal cancer. Our findings suggest the potential prognostic values of these miRNAs for predicting clinical outcome after surgery.


Genes, Chromosomes and Cancer | 2015

Whole-exome sequencing defines the mutational landscape of pheochromocytoma and identifies KMT2D as a recurrently mutated gene.

C. Christofer Juhlin; Adam Stenman; Felix Haglund; Victoria E. Clark; Taylor C. Brown; Jacob F. Baranoski; Kaya Bilguvar; Gerald Goh; Jenny Welander; Fredrika Svahn; Jill C. Rubinstein; Stefano Caramuta; Katsuhito Yasuno; Murat Gunel; Oliver Gimm; Peter Söderkvist; Manju L. Prasad; Reju Korah; Richard P. Lifton; Tobias Carling

As subsets of pheochromocytomas (PCCs) lack a defined molecular etiology, we sought to characterize the mutational landscape of PCCs to identify novel gene candidates involved in disease development. A discovery cohort of 15 PCCs wild type for mutations in PCC susceptibility genes underwent whole‐exome sequencing, and an additional 83 PCCs served as a verification cohort for targeted sequencing of candidate mutations. A low rate of nonsilent single nucleotide variants (SNVs) was detected (6.1/sample). Somatic HRAS and EPAS1 mutations were observed in one case each, whereas the remaining 13 cases did not exhibit variants in established PCC genes. SNVs aggregated in apoptosis‐related pathways, and mutations in COSMIC genes not previously reported in PCCs included ZAN, MITF, WDTC1, and CAMTA1. Two somatic mutations and one constitutional variant in the well‐established cancer gene lysine (K)‐specific methyltransferase 2D (KMT2D, MLL2) were discovered in one sample each, prompting KMT2D screening using focused exome‐sequencing in the verification cohort. An additional 11 PCCs displayed KMT2D variants, of which two were recurrent. In total, missense KMT2D variants were found in 14 (11 somatic, two constitutional, one undetermined) of 99 PCCs (14%). Five cases displayed somatic mutations in the functional FYR/SET domains of KMT2D, constituting 36% of all KMT2D‐mutated PCCs. KMT2D expression was upregulated in PCCs compared to normal adrenals, and KMT2D overexpression positively affected cell migration in a PCC cell line. We conclude that KMT2D represents a recurrently mutated gene with potential implication for PCC development.


Endocrine-related Cancer | 2013

Clinical and functional impact of TARBP2 over-expression in adrenocortical carcinoma

Stefano Caramuta; Linkiat Lee; Deniz Mahmut Özata; Pinar Akçakaya; Hong Xie; Anders Höög; Jan Zedenius; Catharina Larsson; Weng-Onn Lui

Deregulation of microRNA (miRNA) expression in adrenocortical carcinomas (ACCs) has been documented to have diagnostic, prognostic, as well as functional implications. Here, we evaluated the mRNA expression of DROSHA, DGCR8, DICER (DICER1), TARBP2, and PRKRA, the core components in the miRNA biogenesis pathway, in a cohort of 73 adrenocortical tumors (including 43 adenomas and 30 carcinomas) and nine normal adrenal cortices using a RT-qPCR approach. Our results show a significant over-expression of TARBP2, DICER, and DROSHA in the carcinomas compared with adenomas or adrenal cortices (P<0.001 for all comparisons). Using western blot and immunohistochemistry analyses, we confirmed the higher expression of TARBP2, DICER, and DROSHA at the protein level in carcinoma cases. Furthermore, we demonstrate that mRNA expression of TARBP2, but not DICER or DROSHA, is a strong molecular predictor to discriminate between adenomas and carcinomas. Functionally, we showed that inhibition of TARBP2 expression in human NCI-H295R ACC cells resulted in a decreased cell proliferation and induction of apoptosis. TARBP2 over-expression was not related to gene mutations; however, copy number gain of the TARBP2 gene was observed in 57% of the carcinomas analyzed. In addition, we identified that miR-195 and miR-497 could directly regulate TARBP2 and DICER expression in ACC cells. This is the first study to demonstrate the deregulation of miRNA-processing factors in adrenocortical tumors and to show the clinical and biological impact of TARBP2 over-expression in this tumor type.


Blood Cancer Journal | 2013

Role of microRNAs and microRNA machinery in the pathogenesis of diffuse large B-cell lymphoma

Stefano Caramuta; Linkiat Lee; Deniz Mahmut Özata; Pinar Akçakaya; Patrik Georgii-Hemming; Hong Xie; Rose Marie Amini; Charles Henderson Lawrie; Gunilla Enblad; Catharina Larsson; Martin Berglund; W-O Lui

Deregulation of microRNA (miRNA) expression has been documented in diffuse large B-cell lymphoma (DLBCL). However, the impact of miRNAs and their machinery in DLBCL is not fully determined. Here, we assessed the role of miRNA expression and their processing genes in DLBCL development. Using microarray and RT-qPCR approaches, we quantified global miRNAs and core components of miRNA-processing genes expression in 75 DLBCLs (56 de novo and 19 transformed) and 10 lymph nodes (LN). Differential miRNA signatures were identified between DLBCLs and LNs, or between the de novo and transformed DLBCLs. We also identified subsets of miRNAs associated with germinal center B-cell phenotype, BCL6 and IRF4 expression, and clinical staging. In addition, we showed a significant over-expression of TARBP2 in de novo DLBCLs as compared with LNs, and decreased expression of DROSHA, DICER, TARBP2 and PACT in transformed as compared with de novo cases. Interestingly, cases with high TARBP2 and DROSHA expression had a poorer chemotherapy response. We further showed that TARBP2 can regulate miRNA-processing efficiency in DLBCLs, and its expression inhibition decreases cell growth and increases apoptosis in DLBCL cell lines. Our findings provide new insights for the understanding of miRNAs and its machinery in DLBCL.


European Journal of Endocrinology | 2014

MicroRNA expression patterns associated with hyperfunctioning and non-hyperfunctioning phenotypes in adrenocortical adenomas

David Velázquez-Fernández; Stefano Caramuta; Deniz Mahmut Özata; Ming Lu; Anders Höög; Catharina Larsson; Weng-Onn Lui; Jan Zedenius

BACKGROUND The adrenocortical adenoma (ACA) entity includes aldosterone-producing adenoma (APA), cortisol-producing adenoma (CPA), and non-hyperfunctioning adenoma (NHFA) phenotypes. While gene mutations and mRNA expression profiles have been partly characterized, less is known about the alterations involving microRNA (miRNA) expression. AIM To characterize miRNA expression profile in relation to the subtypes of ACAs. SUBJECTS AND METHODS miRNA expression profiles were determined in 26 ACAs (nine APAs, ten CPAs, and seven NHFAs) and four adrenal references using microarray-based screening. Significance analysis of microarrays (SAM) was carried out to identify differentially expressed miRNAs between ACA and adrenal cortices or between tumor subtypes. Selected differentially expressed miRNAs were validated in an extended series of 43 ACAs and ten adrenal references by quantitative RT-PCR. RESULTS An hierarchical clustering revealed separate clusters for APAs and CPAs, while the NHFAs were found spread out within the APA/CPA clusters. When NHFA was excluded, the clustering analysis showed a better separation between APA and CPA. SAM analysis identified 40 over-expressed and three under-expressed miRNAs in the adenomas as compared with adrenal references. Fourteen miRNAs were common among the three ACA subtypes. Furthermore, we found specific miRNAs associated with different tumor phenotypes. CONCLUSION The results suggest that miRNA expression profiles can distinguish different subtypes of ACA, which may contribute to a deeper understanding of ACA development and potential therapeutics.


Epigenetics | 2013

The VHL gene is epigenetically inactivated in pheochromocytomas and abdominal paragangliomas

Adam Andreasson; Nimrod Kiss; Stefano Caramuta; Luqman Sulaiman; Fredrika Svahn; Anders Höög; C. Christofer Juhlin; Catharina Larsson

Pheochromocytoma (PCC) and abdominal paraganglioma (PGL) are neuroendocrine tumors that present with clinical symptoms related to increased catecholamine levels. About a third of the cases are associated with constitutional mutations in pre-disposing genes, of which some may also be somatically mutated in sporadic cases. However, little is known about inactivating epigenetic events through promoter methylation in these very genes. Using bisulphite pyrosequencing we assessed the methylation density of 11 PCC/PGL disease genes in 96 tumors (83 PCCs and 13 PGLs) and 34 normal adrenal references. Gene expression levels were determined by quantitative RT-PCR. Both tumors and normal adrenal samples exhibited low methylation index (MetI) in the EGLN1 (PDH2), MAX, MEN1, NF1, SDHB, SDHC, SDHD, SDHAF2 (SDH5), and TMEM127 promoters, not exceeding 10% in any of the samples investigated. Aberrant RET promoter methylation was observed in two cases only. For the VHL gene we found increased MetI in tumors as compared with normal adrenals (57% vs. 27%; P < 0.001), in malignant vs. benign tumors (63% vs. 55%; P < 0.05), and in PGL vs. PCC (66% vs. 55%; P < 0.0005). Decreased expression of the VHL gene was observed in all tumors compared with normal adrenals (P < 0.001). VHL MetI and gene expressions were inversely correlated (R = −0.359, P < 0.0001). Our results show that the VHL gene promoter has increased methylation compared with normal adrenals (MetI > 50%) in approximately 75% of PCCs and PGLs investigated, highlighting the role of VHL in the development of these tumors.


PLOS ONE | 2016

Tissue and Serum miRNA Profile in Locally Advanced Breast Cancer (LABC) in Response to Neo-Adjuvant Chemotherapy (NAC) Treatment.

Manal Al-Khanbashi; Stefano Caramuta; Adil Al-Ajmi; Ibrahim Al-Haddabi; Marwa Al-Riyami; Weng-Onn Lui; Mansour Al-Moundhri

Introduction MicroRNAs (miRNAs) are small non-coding RNA that plays a vital role in cancer progression. Neo-adjuvant chemotherapy (NAC) has become the standard of care for locally advanced breast cancer. The aim of this study was to evaluate miRNA alterations during NAC using multiple samples of tissue and serum to correlate miRNA expression with clinico-pathological features and patient outcomes. Methods Tissue and serum samples were collected from patients with locally advanced breast cancer undergoing NAC at four time points: time of diagnosis, after the first and fourth cycle of doxorubicin/cyclophosphamide treatment, and after the fourth cycle of docetaxel administration. First, we evaluated the miRNA expression profiles in tissue and correlated expression with clinico-pathological features. Then, a panel of four miRNAs (miR-451, miR-3200, miR-21, and miR-205) in serum samples was further validated using quantitative reverse-transcription polymerase chain reaction (RT-qPCR). The alterations in serum levels of miRNA, associations with clinical and pathological responses, correlation with clinico-pathological features, and survival outcomes were studied using Friedman, Mann-Whitney U, and Spearman, Wilcoxon signed-ranks tests. P≤0.05 was considered statistically significant. Results We analyzed 72 tissue samples and 108 serum samples from 9 patients and 27 patients, respectively. MicroRNA expression profiling of tumor versus normal tissue revealed more than 100 differentially expressed miRNAs. Serum miR-451 levels were significantly decreased during treatment, and higher serum levels were associated with improved clinical and pathological responses and disease-free survival. This is one of the early reports on miR-3200 in response to treatment in breast cancer, as serum levels of miR-3200 found to decline during NAC, and higher serum levels were associated with lower residual breast cancer burden and relapse rates at time of diagnosis. Conclusion Variations in serum miRNA levels during NAC treatment may be therapeutically significant for predicting response and survival outcomes.


Molecular Systems Biology | 2018

Targeting CDK2 overcomes melanoma resistance against BRAF and Hsp90 inhibitors

Alireza Azimi; Stefano Caramuta; Brinton Seashore-Ludlow; Johan Boström; Jonathan L. Robinson; Fredrik Edfors; Rainer Tuominen; Kristel Kemper; Oscar Krijgsman; Daniel S. Peeper; Jens Nielsen; Johan Hansson; Suzanne Egyhazi Brage; Mikael Altun; Mathias Uhlén; Gianluca Maddalo

Novel therapies are undergoing clinical trials, for example, the Hsp90 inhibitor, XL888, in combination with BRAF inhibitors for the treatment of therapy‐resistant melanomas. Unfortunately, our data show that this combination elicits a heterogeneous response in a panel of melanoma cell lines including PDX‐derived models. We sought to understand the mechanisms underlying the differential responses and suggest a patient stratification strategy. Thermal proteome profiling (TPP) identified the protein targets of XL888 in a pair of sensitive and unresponsive cell lines. Unbiased proteomics and phosphoproteomics analyses identified CDK2 as a driver of resistance to both BRAF and Hsp90 inhibitors and its expression is regulated by the transcription factor MITF upon XL888 treatment. The CDK2 inhibitor, dinaciclib, attenuated resistance to both classes of inhibitors and combinations thereof. Notably, we found that MITF expression correlates with CDK2 upregulation in patients; thus, dinaciclib would warrant consideration for treatment of patients unresponsive to BRAF‐MEK and/or Hsp90 inhibitors and/or harboring MITF amplification/overexpression.

Collaboration


Dive into the Stefano Caramuta's collaboration.

Top Co-Authors

Avatar

Catharina Larsson

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Deniz Mahmut Özata

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Weng-Onn Lui

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Anders Höög

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pinar Akçakaya

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Hong Xie

Karolinska Institutet

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Christofer Juhlin

Karolinska University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge