Wenjun Guo
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wenjun Guo.
Cell | 2008
Sendurai Mani; Wenjun Guo; Mai Jing Liao; Elinor Ng Eaton; Ayyakkannu Ayyanan; Alicia Y. Zhou; Mary W. Brooks; Ferenc Reinhard; Cheng Cheng Zhang; Michail Shipitsin; Lauren L. Campbell; Kornelia Polyak; Cathrin Brisken; Jing Yang; Robert A. Weinberg
The epithelial-mesenchymal transition (EMT) is a key developmental program that is often activated during cancer invasion and metastasis. We here report that the induction of an EMT in immortalized human mammary epithelial cells (HMLEs) results in the acquisition of mesenchymal traits and in the expression of stem-cell markers. Furthermore, we show that those cells have an increased ability to form mammospheres, a property associated with mammary epithelial stem cells. Independent of this, stem cell-like cells isolated from HMLE cultures form mammospheres and express markers similar to those of HMLEs that have undergone an EMT. Moreover, stem-like cells isolated either from mouse or human mammary glands or mammary carcinomas express EMT markers. Finally, transformed human mammary epithelial cells that have undergone an EMT form mammospheres, soft agar colonies, and tumors more efficiently. These findings illustrate a direct link between the EMT and the gain of epithelial stem cell properties.
Cell | 2011
Christina Scheel; Elinor Ng Eaton; Sophia Li; Christine L. Chaffer; Ferenc Reinhardt; Kong Jie Kah; George W. Bell; Wenjun Guo; Jeffrey S. Rubin; Andrea L. Richardson; Robert A. Weinberg
The epithelial-mesenchymal transition (EMT) has been associated with the acquisition of motility, invasiveness, and self-renewal traits. During both normal development and tumor pathogenesis, this change in cell phenotype is induced by contextual signals that epithelial cells receive from their microenvironment. The signals that are responsible for inducing an EMT and maintaining the resulting cellular state have been unclear. We describe three signaling pathways, involving transforming growth factor (TGF)-β and canonical and noncanonical Wnt signaling, that collaborate to induce activation of the EMT program and thereafter function in an autocrine fashion to maintain the resulting mesenchymal state. Downregulation of endogenously synthesized inhibitors of autocrine signals in epithelial cells enables the induction of the EMT program. Conversely, disruption of autocrine signaling by added inhibitors of these pathways inhibits migration and self-renewal in primary mammary epithelial cells and reduces tumorigenicity and metastasis by their transformed derivatives.
Breast Cancer Research | 2011
Caitlin D May; Nathalie Sphyris; Kurt W. Evans; Steven J. Werden; Wenjun Guo; Sendurai A. Mani
Aberrant activation of a latent embryonic program - known as the epithelial-mesenchymal transition (EMT) - can endow cancer cells with the migratory and invasive capabilities associated with metastatic competence. The induction of EMT entails the loss of epithelial characteristics and the de novo acquisition of a mesenchymal phenotype. In breast cancer, the EMT state has been associated with cancer stem cell properties including expression of the stem cell-associated CD44+/CD24-/low antigenic profile, self-renewal capabilities and resistance to conventional therapies. Intriguingly, EMT features are also associated with stem cells isolated from the normal mouse mammary gland and human breast reduction tissues as well as the highly aggressive metaplastic and claudin-low breast tumor subtypes. This has implications for the origin of these breast tumors as it remains unclear whether they derive from cells that have undergone EMT or whether they represent an expansion of a pre-existing stem cell population that expresses EMT-associated markers to begin with. In the present review, we consider the current evidence connecting EMT and stem cell attributes and discuss the ramifications of these newly recognized links for our understanding of the emergence of distinct breast cancer subtypes and breast cancer progression.
Cancer Cell | 2013
Wai Leong Tam; Haihui Lu; Joyce Buikhuisen; Boon Seng Soh; Elgene Lim; Ferenc Reinhardt; Zhenhua Jeremy Wu; Jordan A. Krall; Brian Bierie; Wenjun Guo; Xi Chen; Xiaole Shirley Liu; Myles Brown; Bing Lim; Robert A. Weinberg
The epithelial-mesenchymal transition program becomes activated during malignant progression and can enrich for cancer stem cells (CSCs). We report that inhibition of protein kinase C α (PKCα) specifically targets CSCs but has little effect on non-CSCs. The formation of CSCs from non-stem cells involves a shift from EGFR to PDGFR signaling and results in the PKCα-dependent activation of FRA1. We identified an AP-1 molecular switch in which c-FOS and FRA1 are preferentially utilized in non-CSCs and CSCs, respectively. PKCα and FRA1 expression is associated with the aggressive triple-negative breast cancers, and the depletion of FRA1 results in a mesenchymal-epithelial transition. Hence, identifying molecular features that shift between cell states can be exploited to target signaling components critical to CSCs.
Cancer Research | 2014
Man Li Luo; Chang Gong; Chun Hau Chen; Daniel Y. Lee; Hai Hu; Pengyu Huang; Yandan Yao; Wenjun Guo; Ferenc Reinhardt; Gerburg Wulf; Judy Lieberman; Xiao Zhen Zhou; Erwei Song; Kun Ping Lu
Breast cancer stem-like cells (BCSC) have been implicated in tumor growth, metastasis, drug resistance, and relapse but druggable targets in appropriate subsets of this cell population have yet to be identified. Here we identify a fundamental role for the prolyl isomerase Pin1 in driving BCSC expansion, invasiveness, and tumorigenicity, defining it as a key target of miR200c, which is known to be a critical regulator in BCSC. Pin1 overexpression expanded the growth and tumorigenicity of BCSC and triggered epithelial-mesenchymal transition. Conversely, genetic or pharmacological inhibition of Pin1 reduced the abundance and self-renewal activity of BCSC. Moreover, moderate overexpression of miR200c-resistant Pin1 rescued the BCSC defect in miR200c-expressing cells. Genetic deletion of Pin1 also decreased the abundance and repopulating capability of normal mouse mammary stem cells. In human cells, freshly isolated from reduction mammoplasty tissues, Pin1 overexpression endowed BCSC traits to normal breast epithelial cells, expanding both luminal and basal/myoepithelial lineages in these cells. In contrast, Pin1 silencing in primary breast cancer cells freshly isolated from clinical samples inhibited the expansion, self-renewal activity, and tumorigenesis of BCSC in vitro and in vivo. Overall, our work demonstrated that Pin1 is a pivotal regulator acting downstream of miR200c to drive BCSC and breast tumorigenicity, highlighting a new therapeutic target to eradicate BCSC.
SpringerPlus | 2013
Cosima Riemenschnitter; Ivett Teleki; Verena Tischler; Wenjun Guo; Zsuzsanna Varga
BackgroundExpression of transcription-factors as Slug and Sox9 was recently described to determine mammary stem-cell state. Sox10 was previously shown to be present also in breast cancer. Protein overexpression of Slug, Sox9 and Sox10 were associated with poor overall survival and with triple-negative phenotype in breast cancer. In this study we tested the stability of Slug, Sox9 and Sox10 expression during chemotherapy and addressed their prognostic role of in neoadjuvant treated primary breast-cancer and their correlation to pathological-response and overall survival.MethodsWe analyzed immunohistochemical expression of Slug, Sox9 and Sox10 in tissue microarrays of 96 breast cancers prior to and after neoadjuvant chemotherapy. Expression was evaluated in invasive tumor cells and in tumor stroma and scored as 0, 1+, 2+ 3+. Expression-profile prior to and after chemotherapy was correlated to overall survival (Kaplan Meier) and with established clinico-pathological parameter.ResultsSox9, Sox10 and Slug were expressed in 82–96% of the tumor cells prior to chemotherapy. Slug was expressed in 97% of the cases in tumor stroma before therapy. Change in expression-profile after chemotherapy occurred only in Slug expression in tumor-cells (decreased from 82 to 51%, p = 0.0001, Fisher’s exact test). The other markers showed no significant change after chemotherapy. Stromal Sox9 expression (0 to 2+) correlated to better overall survival after chemotherapy (p = 0.004) and reached almost statistical significance prior to chemotherapy (p = 0.065). There was no correlation between Sox9 and hormone-receptor expression. In multivariate-analysis, the stromal Sox9 expression after chemotherapy proved to be an independent and better prognostic marker than hormone-receptor status. Other clinico-pathological parameter (as HER2-status or pathological-stage) showed no correlation to the analyzed markers.ConclusionStrong stromal Sox9 expression in breast cancer after chemotherapy was found to bear negative prognostic information and was associated with shortened overall survival. Slug expression was significantly changed (reduced) in samples after neoadjuvant chemotherapy.
Journal of Cell Biology | 2017
Sara K. Donnelly; Ramon M. Cabrera; Serena P. H. Mao; John R. Christin; Bin Wu; Wenjun Guo; Jose Javier Bravo-Cordero; John Condeelis; Jeffrey E. Segall; Louis Hodgson
The initial step of metastasis is the local invasion of tumor cells into the surrounding tissue. Invadopodia are actin-based protrusions that mediate the matrix degradation necessary for invasion and metastasis of tumor cells. We demonstrate that Rac3 GTPase is critical for integrating the adhesion of invadopodia to the extracellular matrix (ECM) with their ability to degrade the ECM in breast tumor cells. We identify two pathways at invadopodia important for integrin activation and delivery of matrix metalloproteinases: through the upstream recruiter CIB1 as well as the downstream effector GIT1. Rac3 activity, at and surrounding invadopodia, is controlled by Vav2 and &bgr;PIX. These guanine nucleotide exchange factors regulate the spatiotemporal dynamics of Rac3 activity, impacting GIT1 localization. Moreover, the GTPase-activating function of GIT1 toward the vesicular trafficking regulator Arf6 GTPase is required for matrix degradation. Importantly, Rac3 regulates the ability of tumor cells to metastasize in vivo. The Rac3-dependent mechanisms we show in this study are critical for balancing proteolytic activity and adhesive activity to achieve a maximally invasive phenotype.
Scientific Reports | 2018
Dayle Q. Hodge; Jihong Cui; Matthew J. Gamble; Wenjun Guo
Epithelial-Mesenchymal Transition (EMT) is a biological program that plays key roles in various developmental and pathological processes. Although much work has been done on signaling pathways and transcription factors regulating EMT, the epigenetic regulation of EMT remains not well understood. Histone variants have been recognized as a key group of epigenetic regulators. Among them, macroH2A1 is involved in stem cell reprogramming and cancer progression. We postulated that macroH2A1 may play a role in EMT, a process involving reprogramming of cellular states. In this study, we demonstrate that expression of macroH2A1 is dramatically reduced during EMT induction in immortalized human mammary epithelial cells (HMLE). Moreover, ectopic expression of the macroH2A1.1 isoform, but not macroH2A1.2, can suppress EMT induction and reduce the stem-like cell population in HMLE. Interestingly, macroH2A1.1 overexpression cannot revert stable mesenchymal cells back to the epithelial state, suggesting a stage-specific role of macroH2A1.1 in EMT. We further pinpointed that the function of macroH2A1.1 in EMT suppression is dependent on its ability to bind the NAD+ metabolite PAR, in agreement with the inability to suppress EMT by macroH2A1.2, which lacks the PAR binding domain. Thus, our work discovered a previously unrecognized isoform-specific function of macroH2A1 in regulating EMT induction.
Breast Cancer Research | 2018
Serena P. H. Mao; Minji Park; Ramon M. Cabrera; John R. Christin; George S. Karagiannis; Maja H. Oktay; Dietmar M. W. Zaiss; Scott I. Abrams; Wenjun Guo; John Condeelis; Paraic A. Kenny; Jeffrey E. Segall
BackgroundAmphiregulin (AREG), a ligand of the epidermal growth factor receptor, is not only essential for proper mammary ductal development, but also associated with breast cancer proliferation and growth. In the absence of AREG, mammary ductal growth is stunted and fails to expand. Furthermore, suppression of AREG expression in estrogen receptor-positive breast tumor cells inhibits in-vitro and in-vivo growth.MethodsWe crossed AREG-null (AREG−/−) mice with the murine luminal B breast cancer model, MMTV-PyMT (PyMT), to generate spontaneous breast tumors that lack AREG (AREG−/− PyMT). We evaluated tumor growth, cytokeratin-8 (K8)-positive luminal cells, cytokeratin-14 (K14)-positive myoepithelial cells, and expression of AREG, Ki67, and PyMT. Primary myoepithelial cells from nontumor-bearing AREG+/+ mice underwent fluorescence-activated cell sorting and were adapted to culture for in-vitro coculture studies with AT-3 cells, a cell line derived from C57Bl/6 PyMT mammary tumors.ResultsIntriguingly, PyMT-induced lesions progress more rapidly in AREG−/− mice than in AREG+/+ mice. Quantification of K8+ luminal and K14+ myoepithelial cells in non-PyMT AREG−/− mammary glands showed fewer K14+ cells and a thinner myoepithelial layer. Study of AT-3 cells indicated that coculture with myoepithelial cells or exposure to AREG, epidermal growth factor, or basic fibroblast growth factor can suppress PyMT expression. Late-stage AREG−/− PyMT tumors are significantly less solid in structure, with more areas of papillary and cystic growth. Papillary areas appear to be both less proliferative and less necrotic. In The Cancer Genome Atlas database, luminal-B invasive papillary carcinomas have lower AREG expression than luminal B invasive ductal carcinomas.ConclusionsOur study has revealed a previously unknown role of AREG in myoepithelial cell development and PyMT expression. AREG expression is essential for proper myoepithelial coverage of mammary ducts. Both AREG and myoepithelial cells can suppress PyMT expression. We find that lower AREG expression is associated with invasive papillary breast cancer in both the MMTV-PyMT model and human breast cancer.
Cancer Research | 2011
Christina Scheel; Elinor Ng-Eaton; Sophia Li; Christine L. Chaffer; Ferenc Reinhardt; Kong-Jie Kah; George W. Bell; Wenjun Guo; Jeffrey S. Rubin; Andrea L. Richardson; Robert A. Weinberg
Passage through an epithelial-mesenchymal transition (EMT) is associated with the acquisition of migratory and self-renewal abilities in human mammary epithelial cells (MECs). The signaling mechanisms that induce and then maintain these properties have remained unclear. We describe three signaling pathways, involving Transforming Growth Factor (TGF)-beta as well as canonical and non-canonical Wnt signaling, that collaborate to induce epithelial MECs to enter into a mesenchymal and SC-like state. Acting as autocrine signaling loops, these pathways then maintain migratory and self-renewal abilities in normal MECs and control tumorigenicity and metastasis in their transformed derivatives. Autocrine signaling is enabled, at least in part, through downregulation of secreted Wnt antagonists and Bone Morphogenetic Proteins. Like immortalized and transformed MECs, the maintenance of migratory and self-renewal abilities in primary human MECs is dependent on these autocrine loops, suggesting that similar mechanisms regulate biological properties of normal tissue stem cells and tumor-initiating cells in the breast Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research; 2011 Apr 2-6; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2011;71(8 Suppl):Abstract nr LB-108. doi:10.1158/1538-7445.AM2011-LB-108