Wenlu Song
Zhejiang University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wenlu Song.
Bioresource Technology | 2015
Richen Lin; Jun Cheng; Wenlu Song; Lingkan Ding; Binfei Xie; Junhu Zhou; Kefa Cen
Microwave-heated alkali pretreatment (MAP) was investigated to improve enzymatic digestibility and H2/CH4 production from water hyacinth. SEM revealed that MAP deconstructed the lignocellulose matrix and swelled the surfaces of water hyacinth. XRD indicated that MAP decreased the crystallinity index from 16.0 to 13.0 because of cellulose amorphisation. FTIR indicated that MAP effectively destroyed the lignin structure and disrupted the crystalline cellulose to reduce crystallinity. The reducing sugar yield of 0.296 g/gTVS was achieved at optimal hydrolysis conditions (microwave temperature = 190°C, time = 10 min, and cellulase dosage = 5 wt%). The sequentially fermentative hydrogen and methane yields from water hyacinth with MAP and enzymatic hydrolysis were increased to 63.9 and 172.5 mL/gTVS, respectively. The energy conversion efficiency (40.0%) in the two-stage hydrogen and methane cogeneration was lower than that (49.5%) in the one-stage methane production (237.4 mL/gTVS) from water hyacinth with MAP and enzymatic hydrolysis.
Bioresource Technology | 2015
Richen Lin; Jun Cheng; Lingkan Ding; Wenlu Song; Junhu Zhou; Kefa Cen
The inhibitory effects of furan derivatives [i.e. furfural and 5-hydroxymethylfurfural (5-HMF)] and phenolic compounds (i.e. vanillin and syringaldehyde) on dark hydrogen fermentation from glucose were comparatively evaluated. Phenolic compounds exhibited stronger inhibition on hydrogen production and glucose consumption than furan derivatives under the same 15mM concentration. Furan derivatives were completely degraded after 72h fermentation, while over 55% of phenolic compounds remained unconverted after 108h fermentation. The inhibition coefficients of vanillin (14.05) and syringaldehyde (11.21) were higher than those of 5-HMF (4.35) and furfural (0.64). Vanillin exhibited the maximum decrease of hydrogen yield (17%). The consumed reducing power by inhibitors reduction from R-CHO to RCH2OH was a possible reason contributed to the decreased hydrogen yield. Vanillin exhibited the maximum delay of peak times of hydrogen production rate and glucose consumption. Soluble metabolites and carbon conversion efficiency decreased with inhibitors addition, which were consistent with hydrogen production.
Bioresource Technology | 2016
Richen Lin; Jun Cheng; Lingkan Ding; Wenlu Song; Min Liu; Junhu Zhou; Kefa Cen
Ferric oxide nanoparticles (FONPs) were used to facilitate dark hydrogen fermentation using Enterobacter aerogenes. The hydrogen yield of glucose increased from 164.5±2.29 to 192.4±1.14mL/g when FONPs concentration increased from 0 to 200mg/L. SEM images of E. aerogenes demonstrated the existence of bacterial nanowire among cells, suggesting FONPs served as electron conduits to enhance electron transfer. TEM showed cellular internalization of FONPs, indicating hydrogenase synthesis and activity was potentially promoted due to the released iron element. When further increasing FONPs concentration to 400mg/L, the hydrogen yield of glucose decreased to 147.2±2.54mL/g. Soluble metabolic products revealed FONPs enhanced acetate pathway of hydrogen production, but weakened ethanol pathway. This shift of metabolic pathways allowed more nicotinamide adenine dinucleotide for reducing proton to hydrogen.
Bioresource Technology | 2015
Jun Cheng; Richen Lin; Lingkan Ding; Wenlu Song; Yu-You Li; Junhu Zhou; Kefa Cen
The physicochemical properties of cassava residues subjected to microwave (or steam)-heated acid pretreatment (MHAP or SHAP) were comparatively investigated to improve fermentative hydrogen and methane cogeneration. The hydrogen yield from cassava residues with MHAP and enzymolysis was higher (106.2 mL/g TVS) than that with SHAP and enzymolysis (102.1 mL/g TVS), whereas the subsequent methane yields showed opposite results (75.4 and 93.2 mL/g TVS). Total energy conversion efficiency increased to 24.7%. Scanning electron microscopy images revealed MHAP generated numerous regular micropores (∼6 μm) and SHAP generated irregular fragments (∼23 μm) in the destroyed lignocellulose matrix. Transmission electron microscopy images showed SHAP generated wider cracks (∼0.2 μm) in delaminated cell walls than MHAP (∼0.1 μm). X-ray diffraction patterns indicated MHAP caused a higher crystallinity index (33.00) than SHAP (25.88), due to the deconstruction of amorphous cellulose. Fourier transform infrared spectroscopy indicated MHAP caused a higher crystallinity coefficient (1.20) than SHAP (1.12).
Bioresource Technology | 2015
Richen Lin; Jun Cheng; Lingkan Ding; Wenlu Song; Feng Qi; Junhu Zhou; Kefa Cen
The competitive reactions of reducing sugar production and degradation in the subcritical water hydrolysis of rice straw were investigated to optimise reducing sugar yield. The optimised conditions (280°C, 20 MPa, rice straw concentration of 5 wt.% and agitation speed of 200 rpm) resulted in a reducing sugar yield of 0.346 g/g rice straw because of the enhanced reducing sugar production and decreased sugar degradation. The sugar yield increased when the temperature increased from 250°C to 280°C, but it decreased when the temperature further increased to 300°C because of the degradation of monosaccharides (e.g. glucose and xylose) into by-products (e.g. 2-methyltetrahydrofuran and acetic acid). A first-order reaction model was developed to elucidate the competitive reaction kinetics of sugar production and degradation at various temperatures. The highest reducing sugar yield based on the model was achieved at 280°C with the highest production and lowest degradation rates.
Bioresource Technology | 2015
Richen Lin; Jun Cheng; Lingkan Ding; Wenlu Song; Junhu Zhou; Kefa Cen
To enhance biohydrogen production from glucose and xylose in the presence of aldehyde inhibitors, reducing agent (i.e., sodium borohydride) was in situ added for effective detoxification. The detoxification efficiencies of furfural (96.7%) and 5-hydroxymethylfurfural (5-HMF, 91.7%) with 30mM NaBH4 were much higher than those of vanillin (77.3%) and syringaldehyde (69.3%). Biohydrogen fermentation was completely inhibited without detoxification, probably because of the consumption of nicotinamide adenine dinucleotide (NADH) by inhibitors reduction (R-CHO+2NADH→R-CH2OH+2NAD(+)). Addition of 30mM NaBH4 provided the reducing power necessary for inhibitors reduction (4R-CHO+NaBH4+2H2O→4R-CH2OH+NaBO2). The recovered reducing power in fermentation resulted in 99.3% recovery of the hydrogen yield and 64.6% recovery of peak production rate. Metabolite production and carbon conversion after detoxification significantly increased to 63.7mM and 81.9%, respectively.
Bioresource Technology | 2016
Wenlu Song; Jun Cheng; Jinfang Zhao; Chuan-Xi Zhang; Junhu Zhou; Kefa Cen
The hydrogenase genes (hoxEFUYH) of Synechocystis sp. PCC 6803 were cloned and heterologously expressed in Enterobacter aerogenes ATCC13408 for the first time in this study, and the hydrogen yield was significantly enhanced using the recombinant strain. A recombinant plasmid containing the gene in-frame with Glutathione-S-Transferase (GST) gene was transformed into E. aerogenes ATCC13408 to produce a GST-fusion protein. SDS-PAGE and western blot analysis confirm the successful expression of the hox genes. The hydrogenase activity of the recombinant strain is 237.6±9.3ml/(g-DW·h), which is 152% higher than the wild strain. The hydrogen yield of the recombinant strain is 298.3ml/g-glucose, which is 88% higher than the wild strain. During hydrogen fermentation, the recombinant strain produces more acetate and butyrate, but less ethanol. This is corresponding to the NADH metabolism in the cell due to the higher hydrogenase activity with the heterologous expression of hox genes.
Bioresource Technology | 2017
Jun Cheng; Min Liu; Wenlu Song; Lingkan Ding; Jianzhong Liu; Li Zhang; Kefa Cen
Nuclear irradiation was used for the first time to generate efficient mutants of hydrogen-producing bacteria Enterobacter aerogenes, which were screened with larger colour circles of more fermentative acid by-products. E. aerogenes cells were mutated by nuclear irradiation of 60Co γ-rays. The screened E. aerogenes ZJU1 mutant with larger colour circles enhanced the hydrogenase activity from 89.8 of the wild strain to 157.4mLH2/(gDWh). The hereditary stability of the E. aerogenes ZJU1 mutant was certified after over ten generations of cultivation. The hydrogen yield of 301mLH2/gglucose with the mutant was higher by 81.8% than that of 166mL/gglucose with the wild strain. The peak hydrogen production rate of 27.2mL/(L·h) with the mutant was higher by 40.9% compared with that of 19.3mL/(L·h) with the wild strain. The mutant produced more acetate and butyrate but less ethanol compared with the wild strain during hydrogen fermentation.
International Journal of Hydrogen Energy | 2009
Huibo Su; Jun Cheng; Junhu Zhou; Wenlu Song; Kefa Cen
International Journal of Hydrogen Energy | 2009
Huibo Su; Jun Cheng; Junhu Zhou; Wenlu Song; Kefa Cen