Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wenxuan He is active.

Publication


Featured researches published by Wenxuan He.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Perivascular-resident macrophage-like melanocytes in the inner ear are essential for the integrity of the intrastrial fluid–blood barrier

Wenjing Zhang; Min Dai; Anders Fridberger; Ahmed Hassan; Jacqueline M. DeGagne; Lingling Neng; Fei Zhang; Wenxuan He; Tianying Ren; Dennis R. Trune; Manfred Auer; Xiaorui Shi

The microenvironment of the cochlea is maintained by the barrier between the systemic circulation and the fluids inside the stria vascularis. However, the mechanisms that control the permeability of the intrastrial fluid–blood barrier remain largely unknown. The barrier comprises endothelial cells connected to each other by tight junctions and an underlying basement membrane. In a recent study, we found that the intrastrial fluid–blood barrier also includes a large number of perivascular cells with both macrophage and melanocyte characteristics. The perivascular-resident macrophage-like melanocytes (PVM/Ms) are in close contact with vessels through cytoplasmic processes. Here we demonstrate that PVM/Ms have an important role in maintaining the integrity of the intrastrial fluid–blood barrier and hearing function. Using a cell culture-based in vitro model and a genetically induced PVM/M-depleted animal model, we show that absence of PVM/Ms increases the permeability of the intrastrial fluid–blood barrier to both low- and high-molecular-weight tracers. The increased permeability is caused by decreased expression of pigment epithelial-derived factor, which regulates expression of several tight junction-associated proteins instrumental to barrier integrity. When tested for endocochlear potential and auditory brainstem response, PVM/M-depleted animals show substantial drop in endocochlear potential with accompanying hearing loss. Our results demonstrate a critical role for PVM/Ms in regulating the permeability of the intrastrial fluid–blood barrier for establishing a normal endocochlear potential hearing threshold.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Reverse wave propagation in the cochlea

Wenxuan He; Anders Fridberger; Edward Porsov; Karl Grosh; Tianying Ren

Otoacoustic emissions, sounds generated by the inner ear, are widely used for diagnosing hearing disorders and studying cochlear mechanics. However, it remains unclear how emissions travel from their generation sites to the cochlear base. The prevailing view is that emissions reach the cochlear base via a backward-traveling wave, a slow-propagating transverse wave, along the cochlear partition. A different view is that emissions propagate to the cochlear base via the cochlear fluids as a compressional wave, a fast longitudinal wave. These theories were experimentally tested in this study by measuring basilar membrane (BM) vibrations at the cubic distortion product (DP) frequency from two longitudinal locations with a laser interferometer. Generation sites of DPs were varied by changing frequencies of primary tones while keeping the frequency ratio constant. Here, we show that BM vibration amplitude and phase at the DP frequency are very similar to responses evoked by external tones. Importantly, the BM vibration phase at a basal location leads that at a more apical location, indicating a traveling wave that propagates in the forward direction. These data are in conflict with the backward- traveling-wave theory but are consistent with the idea that the emission comes out of the cochlea predominantly through compressional waves in the cochlear fluids.


Nature Communications | 2011

Measurement of cochlear power gain in the sensitive gerbil ear.

Tianying Ren; Wenxuan He; Peter G. Gillespie

The extraordinary sensitivity of the mammalian ear is commonly attributed to the cochlear amplifier, a cellular process thought to locally boost responses of the cochlear partition to soft sounds. However, cochlear power gain has not been measured directly. Here we use a scanning laser interferometer to determine the volume displacement and volume velocity of the cochlear partition by measuring its transverse vibration along and across the partition. We show the transverse displacement at the peak-response location can be >1,000 times greater than the displacement of the stapes, whereas the volume displacement of an area centred at this location is approximately tenfold greater than that of the stapes. Using the volume velocity and cochlear-fluid impedance, we discover that power at the peak-response area is >100-fold greater than that at the stapes. These results demonstrate experimentally that the cochlea amplifies soft sounds, offering insight into the mechanism responsible for the cochlear sensitivity.


Hearing Research | 2007

Two-tone distortion at different longitudinal locations on the basilar membrane

Wenxuan He; Alfred L. Nuttall; Tianying Ren

When listening to two tones at frequency f1 and f2 (f2>f1), one can hear pitches not only at f1 and f2 but also at distortion frequencies f2-f1, (n+1)f1-nf2, and (n+1)f2-nf1 (n=1,2,3...). Such two-tone distortion products (DPs) also can be measured in the ear canal using a sensitive microphone. These ear-generated sounds are called otoacoustic emissions (OAEs). In spite of the common applications of OAEs, the mechanisms by which these emissions travel out of the cochlea remain unclear. In a recent study, the basilar membrane (BM) vibration at 2f1-f2 was measured as a function of the longitudinal location, using a scanning laser interferometer. The data indicated a forward traveling wave and no measurable backward wave. However, this study had a relatively high noise floor and high stimulus intensity. In the current study, the noise floor of the BM measurement was significantly decreased by using reflective beads on the BM, and the vibration was measured at relatively low intensities at more than one longitudinal location. The results show that the DP phase at a basal location leads the phase at an apical location. The data indicate that the emission travels along the BM from base to apex as a forward traveling wave, and no backward traveling wave was detected under the current experimental conditions.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Reticular lamina and basilar membrane vibrations in living mouse cochleae

Tianying Ren; Wenxuan He; David T. Kemp

Significance The remarkable sensitivity of mammalian hearing depends on auditory sensory outer hair cells, yet how these cells enhance the hearing sensitivity remains unclear. By measuring subnanometer vibrations directly from motile outer hair cells in living inner ear, we demonstrate that outer hair cells do not directly amplify the basilar membrane vibration by local feedback as commonly expected; instead, they actively vibrate the reticular lamina over a broad frequency range. The outer hair cell-driven reticular lamina vibration interacts with the basilar membrane traveling wave through the cochlear fluid, resulting in maximal vibrations at the best-frequency location, consequently enhancing hearing sensitivity. This finding advances our knowledge of mammalian hearing and may lead to strategies for restoring hearing in patients. It is commonly believed that the exceptional sensitivity of mammalian hearing depends on outer hair cells which generate forces for amplifying sound-induced basilar membrane vibrations, yet how cellular forces amplify vibrations is poorly understood. In this study, by measuring subnanometer vibrations directly from the reticular lamina at the apical ends of outer hair cells and from the basilar membrane using a custom-built heterodyne low-coherence interferometer, we demonstrate in living mouse cochleae that the sound-induced reticular lamina vibration is substantially larger than the basilar membrane vibration not only at the best frequency but surprisingly also at low frequencies. The phase relation of reticular lamina to basilar membrane vibration changes with frequency by up to 180 degrees from ∼135 degrees at low frequencies to ∼-45 degrees at the best frequency. The magnitude and phase differences between reticular lamina and basilar membrane vibrations are absent in postmortem cochleae. These results indicate that outer hair cells do not amplify the basilar membrane vibration directly through a local feedback as commonly expected; instead, they actively vibrate the reticular lamina over a broad frequency range. The outer hair cell-driven reticular lamina vibration collaboratively interacts with the basilar membrane traveling wave primarily through the cochlear fluid, which boosts peak responses at the best-frequency location and consequently enhances hearing sensitivity and frequency selectivity.


PLOS ONE | 2011

Localization of the Cochlear Amplifier in Living Sensitive Ears

Tianying Ren; Wenxuan He; Edward Porsov

Background To detect soft sounds, the mammalian cochlea increases its sensitivity by amplifying incoming sounds up to one thousand times. Although the cochlear amplifier is thought to be a local cellular process at an area basal to the response peak on the spiral basilar membrane, its location has not been demonstrated experimentally. Methodology and Principal Findings Using a sensitive laser interferometer to measure sub-nanometer vibrations at two locations along the basilar membrane in sensitive gerbil cochleae, here we show that the cochlea can boost soft sound-induced vibrations as much as 50 dB/mm at an area proximal to the response peak on the basilar membrane. The observed amplification works maximally at low sound levels and at frequencies immediately below the peak-response frequency of the measured apical location. The amplification decreases more than 65 dB/mm as sound levels increases. Conclusions and Significance We conclude that the cochlea amplifier resides at a small longitudinal region basal to the response peak in the sensitive cochlea. These data provides critical information for advancing our knowledge on cochlear mechanisms responsible for the remarkable hearing sensitivity, frequency selectivity and dynamic range.


Biophysical Journal | 2010

Fast Reverse Propagation of Sound in the Living Cochlea

Wenxuan He; Anders Fridberger; Edward Porsov; Tianying Ren

The auditory sensory organ, the cochlea, not only detects but also generates sounds. Such sounds, otoacoustic emissions, are widely used for diagnosis of hearing disorders and to estimate cochlear nonlinearity. However, the fundamental question of how the otoacoustic emission exits the cochlea remains unanswered. In this study, emissions were provoked by two tones with a constant frequency ratio, and measured as vibrations at the basilar membrane and at the stapes, and as sound pressure in the ear canal. The propagation direction and delay of the emission were determined by measuring the phase difference between basilar membrane and stapes vibrations. These measurements show that cochlea-generated sound arrives at the stapes earlier than at the measured basilar membrane location. Data also show that basilar membrane vibration at the emission frequency is similar to that evoked by external tones. These results conflict with the backward-traveling-wave theory and suggest that at low and intermediate sound levels, the emission exits the cochlea predominantly through the cochlear fluids.


Scientific Reports | 2013

Basilar membrane vibration is not involved in the reverse propagation of otoacoustic emissions.

Wenxuan He; T. Ren

To understand how the inner ear-generated sound, i.e., otoacoustic emission, exits the cochlea, we created a sound source electrically in the second turn and measured basilar membrane vibrations at two longitudinal locations in the first turn in living gerbil cochleae using a laser interferometer. For a given longitudinal location, electrically evoked basilar membrane vibrations showed the same tuning and phase lag as those induced by sounds. For a given frequency, the phase measured at a basal location led that at a more apical location, indicating that either an electrical or an acoustical stimulus evoked a forward travelling wave. Under postmortem conditions, the electrically evoked emissions showed no significant change while the basilar membrane vibration nearly disappeared. The current data indicate that basilar membrane vibration was not involved in the backward propagation of otoacoustic emissions and that sounds exit the cochlea probably through alternative media, such as cochlear fluids.


Scientific Reports | 2015

Light-induced vibration in the hearing organ

Tianying Ren; Wenxuan He; Yizeng Li; Karl Grosh; Anders Fridberger

The exceptional sensitivity of mammalian hearing organs is attributed to an active process, where force produced by sensory cells boost sound-induced vibrations, making soft sounds audible. This process is thought to be local, with each section of the hearing organ capable of amplifying sound-evoked movement, and nearly instantaneous, since amplification can work for sounds at frequencies up to 100 kHz in some species. To test these fundamental precepts, we developed a method for focally stimulating the living hearing organ with light. Light pulses caused intense and highly damped mechanical responses followed by traveling waves that developed with considerable delay. The delayed response was identical to movements evoked by click-like sounds. This shows that the active process is neither local nor instantaneous, but requires mechanical waves traveling from the cochlear base toward its apex. A physiologically-based mathematical model shows that such waves engage the active process, enhancing hearing sensitivity.


Biophysical Journal | 2011

Persistence of Past Stimulations: Storing Sounds within the Inner Ear

Jiefu Zheng; Sripriya Ramamoorthy; Tianying Ren; Wenxuan He; Dingjun Zha; Fangyi Chen; Anna K. Magnusson; Alfred L. Nuttall; Anders Fridberger

Tones cause vibrations within the hearing organ. Conventionally, these vibrations are thought to reflect the input and therefore end with the stimulus. However, previous recordings of otoacoustic emissions and cochlear microphonic potentials suggest that the organ of Corti does continue to move after the end of a tone. These after-vibrations are characterized here through recordings of basilar membrane motion and hair cell extracellular receptor potentials in living anesthetized guinea pigs. We show that after-vibrations depend on the level and frequency of the stimulus, as well as on the sensitivity of the ear. Even a minor loss of hearing sensitivity caused a sharp reduction in after-vibration amplitude and duration. Mathematical models suggest that after-vibrations are driven by energy added into organ of Corti motion after the end of an acoustic stimulus. The possible importance of after-vibrations for psychophysical phenomena such as forward masking and gap detection are discussed.

Collaboration


Dive into the Wenxuan He's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karl Grosh

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yizeng Li

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David T. Kemp

University College London

View shared research outputs
Top Co-Authors

Avatar

Ahmed Hassan

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge