Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William A. Mitch is active.

Publication


Featured researches published by William A. Mitch.


Environmental Engineering Science | 2003

N-Nitrosodimethylamine (NDMA) as a Drinking Water Contaminant: A Review

William A. Mitch; Jonathan O. Sharp; R. Rhodes Trussell; Richard L. Valentine; Lisa Alvarez-Cohen; David L. Sedlak

N-Nitrosodimethylamine (NDMA) is a member of a family of extremely potent carcinogens, the N-nitrosamines. Until recently, concerns about NDMA mainly focused on the presence of NDMA in food, consumer products, and polluted air. However, current concern focuses on NDMA as a drinking water contaminant resulting from reactions occurring during chlorination or via direct industrial contamination. Because of the relatively high concentrations of NDMA formed during wastewater chlorination, the intentional and unintentional reuse of municipal wastewater is a particularly important area of concern. Although ultraviolet (UV) treatment can effectively remove NDMA, there is considerable interest in the development of less expensive alternative treatment technologies. These alternative technologies include approaches for removing organic nitrogen-containing NDMA precursors prior to chlorination and the use of sunlight photolysis, and in situ bioremediation to remove NDMA and its precursors.


Environmental Science & Technology | 2012

Halonitroalkanes, Halonitriles, Haloamides, and N-Nitrosamines: A Critical Review of Nitrogenous Disinfection Byproduct Formation Pathways

Amisha D. Shah; William A. Mitch

Interest in the formation of nitrogenous disinfection byproducts (N-DBPs) has increased because toxicological research has indicated that they are often more genotoxic, cytotoxic, or carcinogenic than many of the carbonaceous disinfection byproducts (C-DBPs) that have been a focus for previous research. Moreover, population growth has forced utilities to exploit source waters impaired by wastewater effluents or algal blooms. Both waters feature higher levels of organic nitrogen, that might serve as N-DBP precursors. Utilities are exploring new disinfectant combinations to reduce the formation of regulated trihalomethanes and haloacetic acids. As some of these new combinations may promote N-DBP formation, characterization of N-DBP formation pathways is needed. Formation pathways for halonitroalkanes, halonitriles, haloamides, and N-nitrosamines associated with chlorine, ozone, chlorine dioxide, UV, and chloramine disinfection are critically reviewed. Several important themes emerge from the review. First, the formation pathways of the N-DBP families are partially linked because most of the pathways involve similar amine precursors. Second, it is unlikely that a disinfection scheme that is free of byproduct formation will be discovered. Disinfectant combinations should be optimized to reduce the overall exposure to toxic byproducts. Third, the understanding of formation pathways should be employed to devise methods of applying disinfectants that minimize byproduct formation while accomplishing pathogen reduction goals. Fourth, the well-characterized nature of the monomers constituting the biopolymers that likely dominate the organic nitrogen precursor pool should be exploited to predict the formation of byproducts likely to form at high yields.


Environmental Science & Technology | 2010

Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters.

Janel E. Grebel; Joseph J. Pignatello; William A. Mitch

Advanced oxidation processes (AOPs) generating nonselective hydroxyl radicals (HO*) provide a broad-spectrum contaminant destruction option for the decontamination of waters. Halide ions are scavengers of HO* during AOP treatment, such that treatment of saline waters would be anticipated to be ineffective. However, HO* scavenging by halides converts HO* to radical reactive halogen species (RHS) that participate in contaminant destruction but react more selectively with electron-rich organic compounds. The effects of Cl-, Br-, and carbonates (H2CO3+HCO3-+CO3(2-)) on the UV/H2O2 treatment of model compounds in saline waters were evaluated. For single target organic contaminants, the impact of these constituents on contaminant destruction rate suppression at circumneutral pH followed the order Br->carbonates>Cl-. Traces of Br- in the NaCl stock had a greater effect than Cl- itself. Kinetic modeling of phenol destruction demonstrated that RHS contributed significantly to phenol destruction, mitigating the impact of HO* scavenging. The extent of treatment efficiency reduction in the presence of halides varied dramatically among different target organic compounds. Destruction of contaminants containing electron-poor reaction centers in seawater was nearly halted, while 17beta-estradiol removal declined by only 3%. Treatment of mixtures of contaminants with each other and with natural organic matter (NOM) was evaluated. Although NOM served as an oxidant scavenger, conversion of nonselective HO* to selective radicals due to the presence of anions enhanced the efficiency of electron-rich contaminant removal in saline waters by focusing the oxidizing power of the system away from the NOM toward the target contaminant. Despite the importance of contaminant oxidation by halogen radicals, the formation of halogenated byproducts was minimal.


Water Research | 2003

A N-Nitrosodimethylamine (NDMA) precursor analysis for chlorination of water and wastewater

William A. Mitch; Andreas C. Gerecke; David L. Sedlak

N-nitrosodimethylamine (NDMA) is a potent carcinogen formed during chloramination of water and wastewater treatment plant effluents. A procedure is described for quantifying the concentration of the organic precursors of NDMA that could be formed during chlorination of wastewaters and natural waters. The method involves applying a high dose of monochloramine to a pH-buffered sample followed by a 10-day contact period, during which the monochloramine decays at a rate unrelated to the composition of the sample. Analyses of samples of municipal wastewater effluents and surface waters indicate that the method provides a robust and reproducible measurement of NDMA precursors over a wide range of conditions. A sensitive GC/CI/MS/MS analytical procedure for dimethylamine also is described and used to demonstrate that NDMA formation during chlorination of wastewater and natural waters cannot be explained by dimethylamine concentrations alone.


Environmental Science & Technology | 2014

Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs).

Yi Yang; Joseph J. Pignatello; Jun Ma; William A. Mitch

The effect of halides on organic contaminant destruction efficiency was compared for UV/H2O2 and UV/S2O8(2-) AOP treatments of saline waters; benzoic acid, 3-cyclohexene-1-carboxylic acid, and cyclohexanecarboxylic acid were used as models for aromatic, alkene, and alkane constituents of naphthenic acids in oil-field waters. In model freshwater, contaminant degradation was higher by UV/S2O8(2-) because of the higher quantum efficiency for S2O8(2-) than H2O2 photolysis. The conversion of (•)OH and SO4(•-) radicals to less reactive halogen radicals in the presence of seawater halides reduced the degradation efficiency of benzoic acid and cyclohexanecarboxylic acid. The UV/S2O8(2-) AOP was more affected by Cl(-) than the UV/H2O2 AOP because oxidation of Cl(-) is more favorable by SO4(•-) than (•)OH at pH 7. Degradation of 3-cyclohexene-1-carboxylic acid, was not affected by halides, likely because of the high reactivity of halogen radicals with alkenes. Despite its relatively low concentration in saline waters compared to Cl(-), Br(-) was particularly important. Br(-) promoted halogen radical formation for both AOPs resulting in ClBr(•-), Br2(•-), and CO3(•-) concentrations orders of magnitude higher than (•)OH and SO4(•-) concentrations and reducing differences in halide impacts between the two AOPs. Kinetic modeling of the UV/H2O2 AOP indicated a synergism between Br(-) and Cl(-), with Br(-) scavenging of (•)OH leading to BrOH(•-), and further reactions of Cl(-) with this and other brominated radicals promoting halogen radical concentrations. In contaminant mixtures, the conversion of (•)OH and SO4(•-) radicals to more selective CO3(•-) and halogen radicals favored attack on highly reactive reaction centers represented by the alkene group of 3-cyclohexene-1-carboxylic acid and the aromatic group of the model compound, 2,4-dihydroxybenzoic acid, at the expense of less reactive reaction centers such as aromatic rings and alkane groups represented in benzoic acid and cyclohexanecarboxylic acid. This effect was more pronounced for the UV/S2O8(2-) AOP.


Water Research | 2013

Formation, precursors, control, and occurrence of nitrosamines in drinking water: A review

Stuart W. Krasner; William A. Mitch; Daniel L. McCurry; David Hanigan; Paul Westerhoff

This review summarizes major findings over the last decade related to nitrosamines in drinking water, with a particular focus on N-nitrosodimethylamine (NDMA), because it is among the most widely detected nitrosamines in drinking waters. The reaction of inorganic dichloramine with amine precursors is likely the dominant mechanism responsible for NDMA formation in drinking waters. Even when occurrence surveys found NDMA formation in chlorinated drinking waters, it is unclear whether chloramination resulted from ammonia in the source waters. NDMA formation has been associated with the use of quaternary amine-based coagulants and anion exchange resins, and wastewater-impaired source waters. Specific NDMA precursors in wastewater-impacted source waters may include tertiary amine-containing pharmaceuticals or other quaternary amine-containing constituents of personal care products. Options for nitrosamine control include physical removal of precursors by activated carbon or precursor deactivation by application of oxidants, particularly ozone or chlorine, upstream of chloramination. Although NDMA has been the most prevalent nitrosamine detected in worldwide occurrence surveys, it may account for only ≈ 5% of all nitrosamines in chloraminated drinking waters. Other significant contributors to total nitrosamines are poorly characterized. However, high levels of certain low molecular weight nitrosamines have been detected in certain Chinese waters suspected to be impaired by industrial effluents. The review concludes by identifying research needs that should be addressed over the next decade.


Environmental Science & Technology | 2010

Quaternary amines as nitrosamine precursors: a role for consumer products?

Jerome M. Kemper; Spencer S. Walse; William A. Mitch

Nitrosamine formation has been associated with wastewater-impacted waters, but specific precursors within wastewater effluents have not been identified. Experiments indicated that nitrosamines form in low yields from quaternary amines, and that the nitrosamines form from the quaternary amines themselves, not just lower order amine impurities. Polymeric and benzylated quaternary amines were more potent precursors than monomeric quaternary alkylamines. Pretreatment of quaternary amines with ozone or free chlorine, which deactivate lower order amine impurities, did not significantly reduce nitrosamine formation. The nitrosamine formation pathway is unclear but experiments indicated that transformation of quaternary amines to lower order amine precursors via Hofmann elimination was not involved. Experiments suggest that the pathway may involve quaternary amine degradation by amidogen or chloramino radicals formed from chloramines. Quaternary amines are significant constituents of consumer products, including shampoos, detergents, and fabric softeners. Although quaternary amines may be removed by sedimentation during wastewater treatment, their importance should be evaluated on a case-by-case basis. The high loadings from consumer products may enable the portion not removed to serve as precursors.


Environmental Science & Technology | 2015

Iodide, Bromide, and Ammonium in Hydraulic Fracturing and Oil and Gas Wastewaters: Environmental Implications

Jennifer S. Harkness; Gary S. Dwyer; Nathaniel R. Warner; Kimberly M. Parker; William A. Mitch; Avner Vengosh

The expansion of unconventional shale gas and hydraulic fracturing has increased the volume of the oil and gas wastewater (OGW) generated in the U.S. Here we demonstrate that OGW from Marcellus and Fayetteville hydraulic fracturing flowback fluids and Appalachian conventional produced waters is characterized by high chloride, bromide, iodide (up to 56 mg/L), and ammonium (up to 420 mg/L). Br/Cl ratios were consistent for all Appalachian brines, which reflect an origin from a common parent brine, while the I/Cl and NH4/Cl ratios varied among brines from different geological formations, reflecting geogenic processes. There were no differences in halides and ammonium concentrations between OGW originating from hydraulic fracturing and conventional oil and gas operations. Analysis of discharged effluents from three brine treatment sites in Pennsylvania and a spill site in West Virginia show elevated levels of halides (iodide up to 28 mg/L) and ammonium (12 to 106 mg/L) that mimic the composition of OGW and mix conservatively in downstream surface waters. Bromide, iodide, and ammonium in surface waters can impact stream ecosystems and promote the formation of toxic brominated-, iodinated-, and nitrogen disinfection byproducts during chlorination at downstream drinking water treatment plants. Our findings indicate that discharge and accidental spills of OGW to waterways pose risks to both human health and the environment.


Environmental Science & Technology | 2012

Measurement of nitrosamine and nitramine formation from NOx reactions with amines during amine-based carbon dioxide capture for postcombustion carbon sequestration.

Ning Dai; Amisha D. Shah; Lanhua Hu; Michael J. Plewa; Bruce McKague; William A. Mitch

With years of full-scale experience for precombustion CO(2) capture, amine-based technologies are emerging as the prime contender for postcombustion CO(2) capture. However, concerns for postcombustion applications have focused on the possible contamination of air or drinking water supplies downwind by potentially carcinogenic N-nitrosamines and N-nitramines released following their formation by NO(x) reactions with amines within the capture unit. Analytical methods for N-nitrosamines in drinking waters were adapted to measure specific N-nitrosamines and N-nitramines and total N-nitrosamines in solvent and washwater samples. The high levels of amines, aldehydes, and nitrite in these samples presented a risk for the artifactual formation of N-nitrosamines during sample storage or analysis. Application of a 30-fold molar excess of sulfamic acid to nitrite at pH 2 destroyed nitrite with no significant risk of artifactual nitrosation of amines. Analysis of aqueous morpholine solutions purged with different gas-phase NO and NO(2) concentrations indicated that N-nitrosamine formation generally exceeds N-nitramine formation. The total N-nitrosamine formation rate was at least an order of magnitude higher for the secondary amine piperazine (PZ) than for the primary amines 2-amino-2-methyl-1-propanol (AMP) and monoethanolamine (MEA) and the tertiary amine methyldiethanolamine (MDEA). Analysis of pilot washwater samples indicated a 59 μM total N-nitrosamine concentration for a system operated with a 25% AMP/15% PZ solvent, but only 0.73 μM for a 35% MEA solvent. Unfortunately, a greater fraction of the total N-nitrosamine signal was uncharacterized for the MEA-associated washwater. At a 0.73 μM total N-nitrosamine concentration, a ~25000-fold reduction in concentration is needed between washwater units and downwind drinking water supplies to meet proposed permit limits.


Environmental Science & Technology | 2012

Trade-Offs in Disinfection Byproduct Formation Associated with Precursor Preoxidation for Control of N-Nitrosodimethylamine Formation

Amisha D. Shah; Stuart W. Krasner; Chih Fen Tiffany Lee; Urs von Gunten; William A. Mitch

Chloramines in drinking water may form N-nitrosodimethylamine (NDMA). Various primary disinfectants can deactivate NDMA precursors prior to chloramination. However, they promote the formation of other byproducts. This study compared the reduction in NDMA formation due to chlorine, ozone, chlorine dioxide, and UV over oxidant exposures relevant to Giardia control coupled with postchloramination under conditions relevant to drinking water practice. Ten waters impacted by treated wastewater, poly(diallyldimethylammonium chloride) (polyDADMAC) polymer, or anion exchange resin were examined. Ozone reduced NDMA formation by 50% at exposures as low as 0.4 mg×min/L. A similar reduction in NDMA formation by chlorination required ∼60 mg×min/L exposure. However, for some waters, chlorination actually increased NDMA formation at lower exposures. Chlorine dioxide typically had limited efficacy regarding NDMA precursor destruction; moreover, it increased NDMA formation in some cases. UV decreased NDMA formation by ∼30% at fluences >500 mJ/cm(2), levels relevant to advanced oxidation. For the selected pretreatment oxidant exposures, concentrations of regulated trihalomethanes, haloacetic acids, bromate, and chlorite typically remained below current regulatory levels. Chloropicrin and trichloroacetaldehyde formation were increased by preozonation or medium pressure UV followed by postchloramination. Among preoxidants, ozone achieved the greatest reduction in NDMA formation at the lowest oxidant exposure associated with each disinfectant. Accordingly, preozonation may inhibit NDMA formation with minimal risk of promotion of other byproducts. Bromide >500 μg/L generally increased NDMA formation during chloramination. Higher temperatures increased NDMA precursor destruction by preoxidants but also increased NDMA formation during postchloramination. The net effect of these opposing trends on NDMA formation was water-specific.

Collaboration


Dive into the William A. Mitch's collaboration.

Top Co-Authors

Avatar

Stuart W. Krasner

Metropolitan Water District of Southern California

View shared research outputs
Top Co-Authors

Avatar

Joseph J. Pignatello

Connecticut Agricultural Experiment Station

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron Dotson

University of Alaska Anchorage

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amisha D. Shah

Georgia Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge