Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aaron Dotson is active.

Publication


Featured researches published by Aaron Dotson.


Water Science and Technology | 2009

Nitrogen enriched dissolved organic matter (DOM) isolates and their affinity to form emerging disinfection by-products.

Aaron Dotson; Paul Westerhoff; Stuart W. Krasner

Increased contributions from wastewater discharges and algal activity in drinking water supplies can lead to elevated levels of dissolved organic nitrogen (DON), which can increase the likelihood for the formation of emerging nitrogenous disinfection by-products (N-DBPs) of health concern. Dissolved organic matter (DOM) isolated from five waters, using a newly developed DOM isolation method specific to DON fractionation, produced thirty-four isolates of suitable mass. Each isolate was treated with free chlorine or chloramines under formation potential conditions. The DBP yields were determined for three halogenated DBPs (trichloromethane, dichloroacetonitrile, and trichloronitromethane) and one non-halogenated DBP (N-nitrosodimethylamine [NDMA]). Halogenated DBP yields were greater during the application of free chlorine, however chloramination produced significant levels of halogenated N-DBPs for some isolates. NDMA was only observed to form from selected nitrogen-enriched isolates (DOC/DON ratio < 20 mg/mg), especially those isolated from treated wastewater. Other results indicated that nitrogen-enriched DOM resulted in increased yields of the other N-DBPs studied.


Environmental Science & Technology | 2011

Impact of UV Disinfection Combined with Chlorination/Chloramination on the Formation of Halonitromethanes and Haloacetonitriles in Drinking Water

Amisha D. Shah; Aaron Dotson; Karl G. Linden; William A. Mitch

The application of UV disinfection in water treatment is increasing due to both its effectiveness against protozoan pathogens, and the perception that its lack of chemical inputs would minimize disinfection byproduct formation. However, previous research has indicated that treatment of nitrate-containing drinking waters with polychromatic medium pressure (MP), but not monochromatic (254 nm) low pressure (LP), UV lamps followed by chlorination could promote chloropicrin formation. To better understand this phenomenon, conditions promoting the formation of the full suite of chlorinated halonitromethanes and haloacetonitriles were studied. MP UV/postchlorination of authentic filter effluent waters increased chloropicrin formation up to an order of magnitude above the 0.19 μg/L median level in the U.S. EPAs Information Collection Rule database, even at disinfection-level fluences (<300 mJ/cm(2)) and nitrate/nitrite concentrations (1.0 mg/L-N) relevant to drinking waters. Formation was up to 2.5 times higher for postchlorination than for postchloramination. Experiments indicated that the nitrating agent, NO(2)(•), generated during nitrate photolysis, was primarily responsible for halonitromethane promotion. LP UV treatment up to 1500 mJ/cm(2) did not enhance halonitromethane formation. Although MP UV/postchloramination enhanced dichloroacetonitrile formation with Sigma-Aldrich humic acid, formation was not significant in field waters. Prechlorination/MP UV nearly doubled chloropicrin formation compared to MP UV/postchlorination, but effects on haloacetonitrile formation were not significant.


Water Research | 2010

UV/H2O2 treatment of drinking water increases post-chlorination DBP formation

Aaron Dotson; Volha (Olya) S. Keen; Debbie Metz; Karl G. Linden

Ultraviolet (UV) irradiation has become popular as a primary disinfectant because it is very effective against Cryptosporidium and does not directly form regulated disinfection by-products. Higher UV doses and UV advanced oxidation (UV/H2O2) processes are under consideration for the treatment of trace organic pollutants (e.g. pharmaceuticals, personal care products). Despite the disinfection effectiveness of UV light, a secondary disinfectant capable of maintaining a distribution system residual is required to meet current U.S. regulation. This study investigated changes in disinfection by-product (DBP) formation attributed to UV or UV/H2O2 followed by application of free chlorine to quench hydrogen peroxide and provide residual disinfectant. At a UV dose of 1000 mJ/cm(2), trihalomethane (THM) yield increased by up to 4 microg/mg-C and 13 microg/mg-C when treated with low and medium pressure UV, respectively. With the addition of hydrogen peroxide, THM yield increased by up to 25 microg/mg-C (5mg-H2O2/L) and 37 microg/mg-C (10 mg-H2O2/L). Although no changes in DBPs are expected during UV disinfection, application of UV advanced oxidation followed by chlorine addition was assessed with regard to impacts on DBP formation.


Water Research | 2014

Critical analysis of commonly used fluorescence metrics to characterize dissolved organic matter.

Julie A. Korak; Aaron Dotson; R. Scott Summers; Fernando L. Rosario-Ortiz

The use of fluorescence spectroscopy for the analysis and characterization of dissolved organic matter (DOM) has gained widespread interest over the past decade, in part because of its ease of use and ability to provide bulk DOM chemical characteristics. However, the lack of standard approaches for analysis and data evaluation has complicated its use. This study utilized comparative statistics to systematically evaluate commonly used fluorescence metrics for DOM characterization to provide insight into the implications for data analysis and interpretation such as peak picking methods, carbon-normalized metrics and the fluorescence index (FI). The uncertainty associated with peak picking methods was evaluated, including the reporting of peak intensity and peak position. The linear relationship between fluorescence intensity and dissolved organic carbon (DOC) concentration was found to deviate from linearity at environmentally relevant concentrations and simultaneously across all peak regions. Comparative analysis suggests that the loss of linearity is composition specific and likely due to non-ideal intermolecular interactions of the DOM rather than the inner filter effects. For some DOM sources, Peak A deviated from linearity at optical densities a factor of 2 higher than that of Peak C. For carbon-normalized fluorescence intensities, the error associated with DOC measurements significantly decreases the ability to distinguish compositional differences. An in-depth analysis of FI determined that the metric is mostly driven by peak emission wavelength and less by emission spectra slope. This study also demonstrates that fluorescence intensity follows property balance principles, but the fluorescence index does not.


Water Research | 2011

The effect of UV/H2O2 treatment on disinfection by-product formation potential under simulated distribution system conditions.

Deborah H. Metz; Maria Meyer; Aaron Dotson; E.F. Beerendonk; Dionysios D. Dionysiou

Advanced oxidation with ultraviolet light and hydrogen peroxide (UV/H(2)O(2)) produces hydroxyl radicals that have the potential to degrade a wide-range of organic micro-pollutants in water. Yet, when this technology is used to reduce target contaminants, natural organic matter can be altered. This study evaluated disinfection by-product (DBP) precursor formation for UV/H(2)O(2) while reducing trace organic contaminants in natural water (>90% for target pharmaceuticals, pesticides and taste and odor producing compounds and 80% atrazine degradation). A year-long UV/H(2)O(2) pilot study was conducted to evaluate DBP precursor formation with varying water quality. The UV pilot reactors were operated to consistently achieve 80% atrazine degradation, allowing comparison of low pressure (LP) and medium pressure (MP) lamp technologies for DBP precursor formation. Two process waters of differing quality were used as pilot influent, i.e., before and after granular activated carbon adsorption. DBP precursors increased under most of the conditions studied. Regulated trihalomethane formation potential increased through the UV/H(2)O(2) reactors from 20 to 118%, depending on temperature and water quality. When Post-GAC water served as reactor influent, less DBPs were produced in comparison to conventionally treated water. Haloacetic acid (HAA5) increased when conventionally treated water served as UV/H(2)O(2) pilot influent, but only increased slightly (MP lamp) when GAC treated water served as pilot influent. No difference in 3-day simulated distribution system DBP concentration was observed between LP and MP UV reactors when 80% atrazine degradation was targeted.


Water Research | 2012

The effect of inorganic precursors on disinfection byproduct formation during UV-chlorine/chloramine drinking water treatment

Bonnie A. Lyon; Aaron Dotson; Karl G. Linden; Howard S. Weinberg

Ultraviolet (UV) disinfection is being increasingly used in drinking water treatment. It is important to understand how its application to different types of water may influence finished water quality, particularly as anthropogenic activity continues to impact the quality of source waters. The objective of this study was to evaluate the effect of inorganic precursors on the formation of regulated and unregulated disinfection byproducts (DBPs) during UV irradiation of surface waters when combined with chlorination or chloramination. Samples were collected from three drinking water utilities supplied by source waters with varying organic and inorganic precursor content. The filtered samples were treated in the laboratory with a range of UV doses delivered from low pressure (LP, UV output at 253.7 nm) and medium pressure (MP, polychromatic UV output 200-400 nm) mercury lamps followed by chlorination or chloramination, in the presence and absence of additional bromide and nitrate. The regulated trihalomethanes and haloacetic acids were not affected by UV pretreatment at disinfection doses (40-186 mJ/cm²). With higher doses (1000 mJ/cm²), trihalomethane formation was increased 30-40%. While most effects on DBPs were only observed with doses much higher than typically used for UV disinfection, there were some effects on unregulated DBPs at lower doses. In nitrate-spiked samples (1-10 mg N/L), chloropicrin formation doubled and increased three- to six-fold with 40 mJ/cm² MP UV followed by chloramination and chlorination, respectively. Bromopicrin formation was increased in samples containing bromide (0.5-1 mg/L) and nitrate (1-10 mg N/L) when pretreated with LP or MP UV (30-60% with 40 mJ/cm² LP UV and four- to ten-fold increase with 40 mJ/cm² MP UV, after subsequent chlorination). The formation of cyanogen chloride doubled and increased three-fold with MP UV doses of 186 and 1000 mJ/cm², respectively, when followed by chloramination in nitrate-spiked samples but remained below the World Health Organization guideline value of 70 μg/L in all cases. MP UV and high LP UV doses (1000 mJ/cm²) increased chloral hydrate formation after subsequent chlorination (20-40% increase for 40 mJ/cm² MP UV). These results indicate the importance of bench-testing DBP implications of UV applications in combination with post-disinfectants as part of the engineering assessment of a UV-chlorine/chloramine multi-barrier disinfection design for drinking water treatment.


Chemosphere | 2013

Dimer formation during UV photolysis of diclofenac

Olya S. Keen; E. Michael Thurman; Imma Ferrer; Aaron Dotson; Karl G. Linden

Dimer formation was observed during ultraviolet (UV) photolysis of the anti-inflammatory drug diclofenac, and confirmed with mass spectrometry, NMR and fluorescence analysis. The dimers were combinations of the two parent molecules or of the parent and the product of photolysis, and had visible color. Radical formation during UV exposure and dissolved oxygen photosensitized reactions played a role in dimer formation. Singlet oxygen formed via photosensitization by photolysis products of diclofenac. It reacted with diclofenac to form an epoxide which is an intermediate in some dimer formation pathways. Quantum yield of photolysis for diclofenac was 0.21±0.02 and 0.19±0.02 for UV irradiation from medium pressure and low pressure mercury vapor lamps, respectively. Band pass filter experiments revealed that the quantum yield is constant at wavelengths >200 nm. The same dimers formed in laboratory grade water when either of the two UV sources was used. Dimers did not form in wastewater effluent matrix, and diclofenac epoxide molecules may have formed bonds with organic matter rather than each other Implications for the importance of dimer formation in NOM are discussed.


Journal of Environmental Engineering | 2013

Evaluation of Hydrogen Peroxide Chemical Quenching Agents following an Advanced Oxidation Process

Olya S. Keen; Aaron Dotson; Karl G. Linden

AbstractFree chlorine, bovine catalase, sulfite, and thiosulfate were examined as methods for quenching residual hydrogen peroxide after advanced oxidation treatment of water for subsequent laboratory analysis. The challenges and advantages of each method are presented to help inform researchers and practitioners. Quenching hydrogen peroxide with free chlorine is determined to be a better alternative for disinfection byproduct testing, while bovine catalase is a preferred quenching agent for toxicity testing and mass spectrometry analysis.


Journal of Environmental Engineering | 2012

Character and Treatment of Organic Colloids in Challenging and Impacted Drinking Water Sources

Aaron Dotson; Paul Westerhoff

AbstractAquatic colloids are ubiquitous in nature and are composed of inorganic and organic material. During treatment of drinking water they foul granular filters, membranes, and granular activated carbon and are likely to hinder oxidation processes. The organic fraction of aquatic colloids was isolated from 14 samples (three wastewaters, five reservoirs, three rivers, two biological laboratory reactors, and one treated reservoir water). Transmission electron microscopy revealed nanoscale cellular debris and fibrous material. On the basis of advanced spectroscopic techniques (Fourier transform infrared spectroscopy, C13 nuclear magnetic resonance, and transmission electron microscopy) organic colloids were found to contain peptidoglycan, lipids, carbohydrates, and proteins. Saccharides and hydrolysable amino acids accounted for 44 to 81% of organic carbon. The reactivity of these colloids toward chlorine was also evaluated. Disinfection by-product yields were comparable to other organic matter fractions....


Journal of Water and Health | 2014

Assessing point-of-use ultraviolet disinfection for safe water in urban developing communities

Christina K. Barstow; Aaron Dotson; Karl G. Linden

Residents of urban developing communities often have a tap in their home providing treated and sometimes filtered water but its microbial quality cannot be guaranteed. Point-of-use (POU) disinfection systems can provide safe drinking water to the millions who lack access to clean water in urban communities. While many POU systems exist, there are several concerns that can lead to low user acceptability, including low flow rate, taste and odor issues, high cost, recontamination, and ineffectiveness at treating common pathogens. An ultraviolet (UV) POU system was constructed utilizing developing community-appropriate materials and simple construction techniques based around an inexpensive low-wattage, low pressure UV bulb. The system was tested at the bench scale to characterize its hydrodynamic properties and microbial disinfection efficacy. Hydraulically the system most closely resembled a plug flow reactor with minor short-circuiting. The system was challenge tested and validated for a UV fluence of 50 mJ/cm(2) and greater, over varying flow rates and UV transmittances, corresponding to a greater than 4 log reduction of most pathogenic bacteria, viruses, and protozoa of public health concern. This study presents the designed system and testing results to demonstrate the potential architecture of a low-cost, open-source UV system for further prototyping and field-testing.

Collaboration


Dive into the Aaron Dotson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karl G. Linden

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stuart W. Krasner

Metropolitan Water District of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Howard S. Weinberg

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Amisha D. Shah

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Michael J. Sclimenti

Metropolitan Water District of Southern California

View shared research outputs
Top Co-Authors

Avatar

Mikala Larsen

University of Alaska Anchorage

View shared research outputs
Top Co-Authors

Avatar

Olya S. Keen

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge