Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William K. Nuttle is active.

Publication


Featured researches published by William K. Nuttle.


Water Resources Research | 2000

Influence of net freshwater supply on salinity in Florida Bay

William K. Nuttle; James W. Fourqurean; B. J. Cosby; Joseph C. Zieman; Michael B. Robblee

An annual water budget for Florida Bay, the large, seasonally hypersaline estuary in the Everglades National Park, was constructed using physically based models and long-term (31 years) data on salinity, hydrology, and climate. Effects of seasonal and interannual variations of the net freshwater supply (runoff plus rainfall minus evaporation) on salinity variation within the bay were also examined. Particular attention was paid to the effects of runoff, which are the focus of ambitious plans to restore and conserve the Florida Bay ecosystem. From 1965 to 1995 the annual runoff from the Everglades into the bay was less than one tenth of the annual direct rainfall onto the bay, while estimated annual evaporation slightly exceeded annual rainfall. The average net freshwater supply to the bay over a year was thus approximately zero, and interannual variations in salinity appeared to be affected primarily by interannual fluctuations in rainfall. At the annual scale, runoff apparently had little effect on the bay as a whole during this period. On a seasonal basis, variations in rainfall, evaporation, and runoff were not in phase, and the net freshwater supply to the bay varied between positive and negative values, contributing to a strong seasonal pattern in salinity, especially in regions of the bay relatively isolated from exchanges with the Gulf of Mexico and Atlantic Ocean. Changes in runoff could have a greater effect on salinity in the bay if the seasonal patterns of rainfall and evaporation and the timing of the runoff are considered. One model was also used to simulate spatial and temporal patterns of salinity responses expected to result from changes in net freshwater supply. Simulations in which runoff was increased by a factor of 2 (but with no change in spatial pattern) indicated that increased runoff will lower salinity values in eastern Florida Bay, increase the variability of salinity in the South Region, but have little effect on salinity in the Central and West Regions.


PLOS ONE | 2013

The EBM-DPSER Conceptual Model: Integrating Ecosystem Services into the DPSIR Framework

Christopher R. Kelble; Dave K. Loomis; Susan Lovelace; William K. Nuttle; Peter B. Ortner; Pamela J. Fletcher; Geoffrey S. Cook; Jerry J. Lorenz; Joseph N. Boyer

There is a pressing need to integrate biophysical and human dimensions science to better inform holistic ecosystem management supporting the transition from single species or single-sector management to multi-sector ecosystem-based management. Ecosystem-based management should focus upon ecosystem services, since they reflect societal goals, values, desires, and benefits. The inclusion of ecosystem services into holistic management strategies improves management by better capturing the diversity of positive and negative human-natural interactions and making explicit the benefits to society. To facilitate this inclusion, we propose a conceptual model that merges the broadly applied Driver, Pressure, State, Impact, and Response (DPSIR) conceptual model with ecosystem services yielding a Driver, Pressure, State, Ecosystem service, and Response (EBM-DPSER) conceptual model. The impact module in traditional DPSIR models focuses attention upon negative anthropomorphic impacts on the ecosystem; by replacing impacts with ecosystem services the EBM-DPSER model incorporates not only negative, but also positive changes in the ecosystem. Responses occur as a result of changes in ecosystem services and include inter alia management actions directed at proactively altering human population or individual behavior and infrastructure to meet societal goals. The EBM-DPSER conceptual model was applied to the Florida Keys and Dry Tortugas marine ecosystem as a case study to illustrate how it can inform management decisions. This case study captures our system-level understanding and results in a more holistic representation of ecosystem and human society interactions, thus improving our ability to identify trade-offs. The EBM-DPSER model should be a useful operational tool for implementing EBM, in that it fully integrates our knowledge of all ecosystem components while focusing management attention upon those aspects of the ecosystem most important to human society and does so within a framework already familiar to resource managers.


Journal of Hydrology | 1995

Fluxes of water and solute in a coastal wetland sediment. l. The contribution of regional groundwater discharge

William K. Nuttle; Judson W. Harvey

Upward discharge of fresh groundwater into a mid-Atlantic intertidal wetland contributed 62% of the water needed to replace evapotranspiration losses from the sediment during an 11 day period in September. Infiltration during flooding by tides provided most of the balance; thus there was a net advection of salt into the sediment. The amount of groundwater discharge was estimated from changes in water storage in the sediment, as inferred from measurements of hydraulic head made every 10 min. We argue that this approach is inherently more accurate than calculating the flux as the product of hydraulic conductivity and head gradient. Evapotranspiration was estimated from direct measurements of net radiation. On an annual time-scale, our results suggest that groundwater discharge at this site may exceed the evapotranspiration flux during months of reduced evapotranspiration. Should this occur, groundwater-driven advection would supplement diffusion, during flooding, in removing salt from the sediment.


Critical Reviews in Environmental Science and Technology | 2011

The Role of the Everglades Mangrove Ecotone Region (EMER) in Regulating Nutrient Cycling and Wetland Productivity in South Florida

Victor H. Rivera-Monroy; Robert R. Twilley; Stephen E. Davis; Daniel L. Childers; Marc Simard; Randolf Chambers; Rudolf Jaffé; Joseph N. Boyer; David T. Rudnick; Kequi Zhang; Edward Castañeda-Moya; Sharon M.L. Ewe; René M. Price; Carlos Coronado-Molina; Michael S. Ross; Thomas J. Smith; Béatrice Michot; Ehab A. Meselhe; William K. Nuttle; Tiffany G. Troxler; Gregory B. Noe

The authors summarize the main findings of the Florida Coastal Everglades Long-Term Ecological Research (FCE-LTER) program in the EMER, within the context of the Comprehensive Everglades Restoration Plan (CERP), to understand how regional processes, mediated by water flow, control population and ecosystem dynamics across the EMER landscape. Tree canopies with maximum height <3 m cover 49% of the EMER, particularly in the SE region. These scrub/dwarf mangroves are the result of a combination of low soil phosphorus (P < 59 μg P g dw−1) in the calcareous marl substrate and long hydroperiod. Phosphorus limits the EMER and its freshwater watersheds due to the lack of terrigenous sediment input and the phosphorus-limited nature of the freshwater Everglades. Reduced freshwater delivery over the past 50 years, combined with Everglades compartmentalization and a 10 cm rise in coastal sea level, has led to the landward transgression (∼1.5 km in 54 years) of the mangrove ecotone. Seasonal variation in freshwater input strongly controls the temporal variation of nitrogen and P exports (99%) from the Everglades to Florida Bay. Rapid changes in nutrient availability and vegetation distribution during the last 50 years show that future ecosystem restoration actions and land use decisions can exert a major influence, similar to sea level rise over the short term, on nutrient cycling and wetland productivity in the EMER.


Journal of Coastal Research | 2007

Assessing Effects of Data Limitations on Salinity Forecasting in Barataria Basin, Louisiana, with a Bayesian Analysis

Emad Habib; William K. Nuttle; Victor H. Rivera-Monroy; Shankar Gautam; Jing Wang; Ehab A. Meselhe; Robert R. Twilley

Abstract Reliable forecasts of salinity changes are essential for restoring and sustaining natural resources of estuaries and coastal ecosystems. Because of the physical complexity of such ecosystems, information on uncertainty associated with salinity forecasts should be assessed and incorporated into management and restoration decisions. The objective of this study was to investigate uncertainty in salinity forecasts imposed by limitations on data available to calibrate and apply a mass balance salinity model in the Barataria basin, Louisiana. The basin is an estuarine wetland-dominated ecosystem located directly west of the Mississippi Delta complex. The basin has been experiencing significant losses of wetland at a rate of nearly 23 km2/y. A Bayesian-based methodology was applied to study the effect of data-related uncertainty on both the retrieval of model parameters and the subsequent model predictions. We focused on uncertainty caused by limited sampling and coverage of salinity calibration data and by sparse rain gauge data within the basin. The results indicated that data limitations lead to significant uncertainty in the identification of model parameters, causing moderate to large systematic and random errors in model results. The most significant effect was related to lack of accurate information on rainfall, a major source of fresh water in the basin. The approach and results of this study can be used to identify necessary improvements in monitoring of complex estuarine systems that can decrease forecast uncertainty and allow managers greater accuracy in planning restoration of coastal resources.


Estuaries and Coasts | 2007

Variation and Uncertainty in Evaporation from a Subtropical Estuary: Florida Bay

René M. Price; William K. Nuttle; B. J. Cosby; Peter K. Swart

Variation and uncertainty in estimated evaporation was determined over time and between two locations in Florida Bay, a subtropical estuary. Meteorological data were collected from September 2001 to August 2002 at Rabbit Key and Butternut Key within the Bay. Evaporation was estimated using both vapor flux and energy budget methods. The results were placed into a long-term context using 33 years of temperature and rainfall data collected in south Florida. Evaporation also was estimated from this long-term data using an empirical formula relating evaporation to clear sky solar radiation and air temperature. Evaporation estimates for the 12-mo period ranged from 144 to 175 cm yr−1, depending on location and method, with an average of 163 cm yr−1 (±9%). Monthly values ranged from 9.2 to 18.5 cm, with the highest value observed in May, corresponding with the maximum in measured net radiation. Uncertainty estimates derived from measurement errors in the data were as much as 10%, and were large enough to obscure differences in evaporation between the two sites. Differences among all estimates for any month indicate the overall uncertainty in monthly evaporation, and ranged from 9% to 26%. Over a 33-yr period (1970–2002), estimated annual evaporation from Florida Bay ranged from 148 to 181 cm yr−1, with an average of 166 cm yr−1. Rainfall was consistently lower in Florida Bay than evaporation, with a long-term average of 106 cm yr−1. Rainfall considered alone was uncorrelated with evaporation at both monthly and annual time scales; when the seasonal variation in clear sky radiation was also taken into account both net radiation and evaporation were significantly suppressed in months with high rainfall.


Water Resources Research | 1984

Surface Infiltration in Salt Marshes: Theory, Measurement, and Biogeochemical Implications

Harold F. Hemond; William K. Nuttle; Roger W. Burke; Keith D. Stolzenbach


Journal of Hydrology | 1995

Fluxes of water and solute in a coastal wetland sediment. 2. Effect of macropores on solute exchange with surface water

Judson W. Harvey; William K. Nuttle


Hydrological Processes | 1990

Mechanisms of water storage in salt marsh sediments: the importance of dilation

William K. Nuttle; Harold F. Hemond; Keith D. Stolzenbach


Journal of Sea Research | 2010

Denitrification in coastal Louisiana: A spatial assessment and research needs

Victor H. Rivera-Monroy; Peter Lenaker; Robert R. Twilley; Ronald D. DeLaune; C. W. Lindau; William K. Nuttle; Emad Habib; Robinson W. Fulweiler; Edward Castañeda-Moya

Collaboration


Dive into the William K. Nuttle's collaboration.

Top Co-Authors

Avatar

Joseph N. Boyer

Plymouth State University

View shared research outputs
Top Co-Authors

Avatar

Harold F. Hemond

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Robert R. Twilley

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. J. Cosby

University of Virginia

View shared research outputs
Top Co-Authors

Avatar

Christopher R. Kelble

Atlantic Oceanographic and Meteorological Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ehab A. Meselhe

University of Louisiana at Lafayette

View shared research outputs
Top Co-Authors

Avatar

Emad Habib

University of Louisiana at Lafayette

View shared research outputs
Top Co-Authors

Avatar

Judson W. Harvey

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge