Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William O. Hancock is active.

Publication


Featured researches published by William O. Hancock.


Molecular Cell | 2003

The Kinesin-Related Protein MCAK Is a Microtubule Depolymerase that Forms an ATP-Hydrolyzing Complex at Microtubule Ends

Andrew W. Hunter; Michael Caplow; David L. Coy; William O. Hancock; Stefan Diez; Linda Wordeman; Jonathon Howard

MCAK belongs to the Kin I subfamily of kinesin-related proteins, a unique group of motor proteins that are not motile but instead destabilize microtubules. We show that MCAK is an ATPase that catalytically depolymerizes microtubules by accelerating, 100-fold, the rate of dissociation of tubulin from microtubule ends. MCAK has one high-affinity binding site per protofilament end, which, when occupied, has both the depolymerase and ATPase activities. MCAK targets protofilament ends very rapidly (on-rate 54 micro M(-1).s(-1)), perhaps by diffusion along the microtubule lattice, and, once there, removes approximately 20 tubulin dimers at a rate of 1 s(-1). We propose that up to 14 MCAK dimers assemble at the end of a microtubule to form an ATP-hydrolyzing complex that processively depolymerizes the microtubule.


Nature Cell Biology | 1999

Kinesin’s tail domain is an inhibitory regulator of the motor domain

David L. Coy; William O. Hancock; Michael Wagenbach; Jonathon Howard

When not bound to cargo, the motor protein kinesin is in an inhibited state that has low microtubule-stimulated ATPase activity. Inhibition serves to minimize the dissipation of ATP and to prevent mislocalization of kinesin in the cell. Here we show that this inhibition is relieved when kinesin binds to an artificial cargo. Inhibition is mediated by kinesin’s tail domain: deletion of the tail activates the ATPase without need of cargo binding, and inhibition is re-established by addition of exogenous tail peptide. Both ATPase and motility assays indicate that the tail does not prevent kinesin from binding to microtubules, but rather reduces the motor’s stepping rate.


Current Biology | 2010

Neck Linker Length Determines the Degree of Processivity in Kinesin-1 and Kinesin-2 Motors

Shankar Shastry; William O. Hancock

Defining the mechanical and biochemical determinates of kinesin processivity is important for understanding how diverse kinesins are tuned for specific cellular functions. Because transmission of mechanical forces through the 14-18 amino acid neck linker domain underlies coordinated stepping, we investigated the role of neck linker length, charge, and structure in kinesin-1 and kinesin-2 motor behavior. For optimum comparison with kinesin-1, the KIF3A head and neck linker of kinesin-2 were fused to the kinesin-1 neck coil and rod. Extending the 14-residue kinesin-1 neck linker reduced processivity, and shortening the 17-residue kinesin-2 neck linker enhanced processivity. When a proline in the kinesin-2 neck linker was replaced, kinesin-1 and kinesin-2 run lengths scaled identically with neck linker length, despite moving at different speeds. In low-ionic-strength buffer, charge had a dominant effect on motor processivity, which resolves ongoing controversy regarding the effect of neck linker length on kinesin processivity. From stochastic simulations, the results are best explained by neck linker extension slowing strain-dependent detachment of the rear head along with diminishing strain-dependent inhibition of ATP binding. These results help delineate how interhead strain maximizes stepping and suggest that less processive kinesins are tuned to coordinate with other motors differently than the maximally processive kinesin-1.


Molecular Biology of the Cell | 2009

Anterograde Microtubule Transport Drives Microtubule Bending in LLC-PK1 Epithelial Cells

Andrew D. Bicek; Erkan Tüzel; Aleksey Demtchouk; Maruti Uppalapati; William O. Hancock; Daniel M. Kroll; David J. Odde

Microtubules (MTs) have been proposed to act mechanically as compressive struts that resist both actomyosin contractile forces and their own polymerization forces to mechanically stabilize cell shape. To identify the origin of MT bending, we directly observed MT bending and F-actin transport dynamics in the periphery of LLC-PK1 epithelial cells. We found that F-actin is nearly stationary in these cells even as MTs are deformed, demonstrating that MT bending is not driven by actomyosin contractility. Furthermore, the inhibition of myosin II activity through the use of blebbistatin results in microtubules that are still dynamically bending. In addition, as determined by fluorescent speckle microscopy, MT polymerization rarely results, if ever, in bending. We suppressed dynamic instability using nocodazole, and we observed no qualitative change in the MT bending dynamics. Bending most often results from anterograde transport of proximal portions of the MT toward a nearly stationary distal tip. Interestingly, we found that in an in vitro kinesin-MT gliding assay, MTs buckle in a similar manner. To make quantitative comparisons, we measured curvature distributions of observed MTs and found that the in vivo and in vitro curvature distributions agree quantitatively. In addition, the measured MT curvature distribution is not Gaussian, as expected for a thermally driven semiflexible polymer, indicating that thermal forces play a minor role in MT bending. We conclude that many of the known mechanisms of MT deformation, such as polymerization and acto-myosin contractility, play an inconsequential role in mediating MT bending in LLC-PK1 cells and that MT-based molecular motors likely generate most of the strain energy stored in the MT lattice. The results argue against models in which MTs play a major mechanical role in LLC-PK1 cells and instead favor a model in which mechanical forces control the spatial distribution of the MT array.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Interhead tension determines processivity across diverse N-terminal kinesins.

Shankar Shastry; William O. Hancock

Consistent with their diverse intracellular roles, the processivity of N-terminal kinesin motors varies considerably between different families. Kinetics experiments on isolated motor domains suggest that differences in processivity result from differences in the underlying biochemistry of the catalytic heads. However, the length of the flexible neck linker domain also varies from 14 to 18 residues between families. Because the neck linker acts as a mechanical element that transmits interhead tension, altering its mechanical properties is expected to affect both front and rear head gating, mechanisms that underlie processive walking. To test the hypothesis that processivity differences result from family-specific differences in neck linker mechanics, we systematically altered the neck linker length in kinesin-1, -2, -3, -5, and -7 motors and measured run length and velocity in a single-molecule fluorescence assay. Shortening the neck linkers of kinesin-3 (Unc104/KIF1A) and kinesin-5 (Eg5/KSP) to 14 residues enhanced processivity to match kinesin-1, which has a 14-residue neck linker. After substituting a single residue in the last alpha helix of the catalytic core, kinesin-7 (CENP-E) exhibited this same behavior. This convergence of processivity was observed even though motor speeds varied over a 25-fold range. These results suggest that differences in unloaded processivity between diverse kinesins is primarily due to differences in the lengths of their neck linker domains rather than specific tuning of rate constants in their ATP hydrolysis cycles.


Biochimica et Biophysica Acta | 2000

Distinct cytoplasmic dynein complexes are transported by different mechanisms in axons

S.J. Susalka; William O. Hancock; K.K. Pfister

In neurons, cytoplasmic dynein is synthesized in the cell body, but its function is to move cargo from the axon back to the cell body. Dynein must therefore be delivered to the axon and its motor activity must be regulated during axonal transport. Cytoplasmic dynein is a large protein complex composed of a number of different subunits. The dynein heavy chains contain the motor domains and the intermediate chains are involved in binding the complex to cargo. Five different intermediate chain polypeptides, which are the result of the alternative splicing of the two intermediate chain genes, have been identified. We have characterized two distinct pools of dynein that are transported from the cell body along the axon by different mechanisms. One pool, which contains the ubiquitous intermediate chain, is associated with the membranous organelles transported by kinesin in the fast transport component. The other pool, which contains the other developmentally regulated intermediate chains, is transported in slow component b. The mechanism of dynein regulation will therefore depend on which pool of dynein is recruited to function as the retrograde motor. In addition, the properties of the large pool of dynein associated with actin in slow component b are consistent with the hypothesis that this dynein may be the motor for microtubule transport in the axon.


eLife | 2015

Examining kinesin processivity within a general gating framework

Johan O.L. Andreasson; Bojan Milic; Geng-Yuan Chen; Nicholas R. Guydosh; William O. Hancock; Steven M. Block

Kinesin-1 is a dimeric motor that transports cargo along microtubules, taking 8.2-nm steps in a hand-over-hand fashion. The ATP hydrolysis cycles of its two heads are maintained out of phase by a series of gating mechanisms, which lead to processive runs averaging ∼1 μm. A key structural element for inter-head coordination is the neck linker (NL), which connects the heads to the stalk. To examine the role of the NL in regulating stepping, we investigated NL mutants of various lengths using single-molecule optical trapping and bulk fluorescence approaches in the context of a general framework for gating. Our results show that, although inter-head tension enhances motor velocity, it is crucial neither for inter-head coordination nor for rapid rear-head release. Furthermore, cysteine-light mutants do not produce wild-type motility under load. We conclude that kinesin-1 is primarily front-head gated, and that NL length is tuned to enhance unidirectional processivity and velocity. DOI: http://dx.doi.org/10.7554/eLife.07403.001


Proceedings of the National Academy of Sciences of the United States of America | 2014

Kinesin processivity is gated by phosphate release

Bojan Milic; Johan O.L. Andreasson; William O. Hancock; Steven M. Block

Significance Kinesin-1 is a motor protein central to intracellular transport. Prevailing models of the kinesin mechanochemical cycle—which invoke docking of the neck linker domain upon ATP binding—fail to explain the remarkable processivity of kinesin, which represents a competition between dissociation from the microtubule and continuation of the stepping cycle. We show that kinesin dissociation, which characterizes the end of a processive run, is gated by phosphate release following ATP hydrolysis. The structural change driving kinesin motility, likely neck linker docking, is therefore completed only upon hydrolysis. Our results offer insights into gating mechanisms and necessitate revisions to existing models of the kinesin cycle. Kinesin-1 is a dimeric motor protein, central to intracellular transport, that steps hand-over-hand toward the microtubule (MT) plus-end, hydrolyzing one ATP molecule per step. Its remarkable processivity is critical for ferrying cargo within the cell: over 100 successive steps are taken, on average, before dissociation from the MT. Despite considerable work, it is not understood which features coordinate, or “gate,” the mechanochemical cycles of the two motor heads. Here, we show that kinesin dissociation occurs subsequent to, or concomitant with, phosphate (Pi) release following ATP hydrolysis. In optical trapping experiments, we found that increasing the steady-state population of the posthydrolysis ADP·Pi state (by adding free Pi) nearly doubled the kinesin run length, whereas reducing either the ATP binding rate or hydrolysis rate had no effect. The data suggest that, during processive movement, tethered-head binding occurs subsequent to hydrolysis, rather than immediately after ATP binding, as commonly suggested. The structural change driving motility, thought to be neck linker docking, is therefore completed only upon hydrolysis, and not ATP binding. Our results offer additional insights into gating mechanisms and suggest revisions to prevailing models of the kinesin reaction cycle.


Circulation Research | 1993

Ca2+ and segment length dependence of isometric force kinetics in intact ferret cardiac muscle.

William O. Hancock; Donald A. Martyn; Lee L. Huntsman

The influence of Ca2+ and sarcomere length on myocardial crossbridge kinetics was studied in ferret papillary muscle by measuring the rate of force redevelopment following a rapid length step that dropped the force to zero. Tetanic stimulation with 5 mumol/L ryanodine was used to obtain a steady-state contraction, and segment length was measured and controlled using a sense-coil technique that measures changes in the cross-sectional area of the central region of the muscle. The rate constant for the recovery of force (ktr) following a rapid length release was obtained by fitting the data with a single exponential function. Contrary to results from skinned skeletal fibers in which ktr increases almost 10-fold from low to maximal activation levels, ktr was found not to increase at higher activation levels in this study. Similarly, although force increased with segment length under all conditions, ktr never increased with length. Data presented here are consistent with a model of myocardial Ca2+ activation in which Ca2+ modulates the number of crossbridges interacting with the thin filament and are inconsistent with a model in which Ca2+ modulates the kinetics of transitions to force producing states within the actomyosin cycle. Differences in the activation dependence of the force redevelopment rate between cardiac and skeletal muscle suggest that there are fundamental differences in the mechanism of Ca2+ activation between these two muscle types.


Biophysical Journal | 2014

Kinesin's Neck-Linker Determines its Ability to Navigate Obstacles on the Microtubule Surface

Gregory J. Hoeprich; Andrew R. Thompson; Derrick P. McVicker; William O. Hancock; Christopher L. Berger

The neck-linker is a structurally conserved region among most members of the kinesin superfamily of molecular motor proteins that is critical for kinesins processive transport of intracellular cargo along the microtubule surface. Variation in the neck-linker length has been shown to directly modulate processivity in different kinesin families; for example, kinesin-1, with a shorter neck-linker, is more processive than kinesin-2. Although small differences in processivity are likely obscured in vivo by the coupling of most cargo to multiple motors, longer and more flexible neck-linkers may allow different kinesins to navigate more efficiently around the many obstacles, including microtubule-associated proteins (MAPs), that are found on the microtubule surface within cells. We hypothesize that, due to its longer neck-linker, kinesin-2 can more easily navigate obstacles (e.g., MAPs) on the microtubule surface than kinesin-1. We used total internal reflection fluorescence microscopy to observe single-molecule motility from different kinesin-1 and kinesin-2 neck-linker chimeras stepping along microtubules in the absence or presence of two Tau isoforms, 3RS-Tau and 4RL-Tau, both of which are MAPs that are known to differentially affect kinesin-1 motility. Our results demonstrate that unlike kinesin-1, kinesin-2 is insensitive to the presence of either Tau isoform, and appears to have the ability to switch protofilaments while stepping along the microtubule when challenged by an obstacle, such as Tau. Thus, although kinesin-1 may be more processive, the longer neck-linker length of kinesin-2 allows it to be better optimized to navigate the complex microtubule landscape. These results provide new insight, to our knowledge, into how kinesin-1 and kinesin-2 may work together for the efficient delivery of cargo in cells.

Collaboration


Dive into the William O. Hancock's collaboration.

Top Co-Authors

Avatar

Keith J. Mickolajczyk

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Shankar Shastry

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Maruti Uppalapati

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Thomas N. Jackson

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Geng-Yuan Chen

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Erkan Tüzel

Worcester Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Ying-Ming Huang

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Yalei Chen

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gayatri Muthukrishnan

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge