Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William P. Forrest is active.

Publication


Featured researches published by William P. Forrest.


Journal of the American Chemical Society | 2011

Functionalization of Carbon Dioxide and Carbon Disulfide Using a Stable Uranium(III) Alkyl Complex

Ellen M. Matson; William P. Forrest; Phillip E. Fanwick; Suzanne C. Bart

A rare uranium(III) alkyl complex, Tp*(2)U(CH(2)Ph) (2) (Tp* = hydrotris(3,5-dimethylpyrazolyl)borate), was synthesized by salt metathesis from Tp*(2)UI (1) and KCH(2)Ph and fully characterized using (1)H NMR, infrared, and electronic absorption spectroscopies as well as X-ray crystallography. This complex has a uranium-carbon distance of 2.57(2) Å, which is comparable to other uranium alkyls reported. Treating this compound with either carbon dioxide or carbon disulfide results in insertion into the uranium-carbon bond to generate Tp*(2)U(κ(2)-O(2)CCH(2)Ph) (3) and Tp*(2)U(SC(S)CH(2)Ph) (4), respectively. These species, characterized spectroscopically and by X-ray crystallography, feature new carboxylate and dithiocarboxylate ligands. Analysis by electronic absorption spectroscopy supports the trivalent oxidation state of the uranium center in both of these derivatives. Addition of trimethylsilylhalides (Me(3)SiX; X = Cl, I) to 3 results in the release of the free silyl ester, Me(3)SiOC(O)CH(2)Ph, forming the initial uranium monohalide species, Tp*(2)UX, which can then be used over multiple cycles for the functionalization of carbon dioxide.


Inorganic Chemistry | 2011

Synthesis, characterization, and multielectron reduction chemistry of uranium supported by redox-active α-diimine ligands.

Steven J. Kraft; Ursula J. Williams; Scott R. Daly; Eric J. Schelter; Stosh A. Kozimor; Kevin S. Boland; James M. Kikkawa; William P. Forrest; Christin N. Christensen; Daniel E. Schwarz; Phillip E. Fanwick; David L. Clark; Steve D. Conradson; Suzanne C. Bart

Uranium compounds supported by redox-active α-diimine ligands, which have methyl groups on the ligand backbone and bulky mesityl substituents on the nitrogen atoms {(Mes)DAB(Me) = [ArN═C(Me)C(Me)═NAr], where Ar = 2,4,6-trimethylphenyl (Mes)}, are reported. The addition of 2 equiv of (Mes)DAB(Me), 3 equiv of KC(8), and 1 equiv of UI(3)(THF)(4) produced the bis(ligand) species ((Mes)DAB(Me))(2)U(THF) (1). The metallocene derivative, Cp(2)U((Mes)DAB(Me)) (2), was generated by the addition of an equimolar ratio of (Mes)DAB(Me) and KC(8) to Cp(3)U. The bond lengths in the molecular structure of both species confirm that the α-diimine ligands have been doubly reduced to form ene-diamide ligands. Characterization by electronic absorption spectroscopy shows weak, sharp transitions in the near-IR region of the spectrum and, in combination with the crystallographic data, is consistent with the formulation that tetravalent uranium ions are present and supported by ene-diamide ligands. This interpretation was verified by U L(III)-edge X-ray absorption near-edge structure (XANES) spectroscopy and by variable-temperature magnetic measurements. The magnetic data are consistent with singlet ground states at low temperature and variable-temperature dependencies that would be expected for uranium(IV) species. However, both complexes exhibit low magnetic moments at room temperature, with values of 1.91 and 1.79 μ(B) for 1 and 2, respectively. Iodomethane was used to test the reactivity of 1 and 2 for multielectron transfer. While 2 showed no reactivity with CH(3)I, the addition of 2 equiv of iodomethane to 1 resulted in the formation of a uranium(IV) monoiodide species, ((Mes)DAB(Me))((Mes)DAB(Me2))UI {3; (Mes)DAB(Me2) = [ArN═C(Me)C(Me(2))NAr]}, which was characterized by single-crystal X-ray diffraction and U M(4)- and M(5)-edge XANES. Confirmation of the structure was also attained by deuterium labeling studies, which showed that a methyl group was added to the ene-diamide ligand carbon backbone.


Journal of the American Chemical Society | 2013

A well-defined silica-supported tungsten oxo alkylidene is a highly active alkene metathesis catalyst.

Matthew P. Conley; Victor Mougel; Dmitry V. Peryshkov; William P. Forrest; David Gajan; Anne Lesage; Lyndon Emsley; Christophe Copéret; Richard R. Schrock

Grafting (ArO)2W(═O)(═CHtBu) (ArO = 2,6-mesitylphenoxide) on partially dehydroxylated silica forms mostly [(≡SiO)W(═O)(═CHtBu)(OAr)] along with minor amounts of [(≡SiO)W(═O)(CH2tBu)(OAr)2] (20%), both fully characterized by elemental analysis and IR and NMR spectroscopies. The well-defined oxo alkylidene surface complex [(≡SiO)W(═O)(═CHtBu)OAr] is among the most active heterogeneous metathesis catalysts reported to date in the self-metathesis of cis-4-nonene and ethyl oleate, in sharp contrast to the classical heterogeneous catalysts based on WO3/SiO2.


Journal of the American Chemical Society | 2014

Stereospecific Ring-Opening Metathesis Polymerization of Norbornadienes Employing Tungsten Oxo Alkylidene Initiators

William P. Forrest; Jonathan G. Weis; Jeremy M. John; Jonathan C. Axtell; Jeffrey H. Simpson; Timothy M. Swager; Richard R. Schrock

We report here the polymerization of several 7-isopropylidene-2,3-disubstituted norbornadienes, 7-oxa-2,3-dicarboalkoxynorbornadienes, and 11-oxa-benzonorbornadienes with a single tungsten oxo alkylidene catalyst, W(O)(CH-t-Bu)(OHMT)(Me2Pyr) (OHMT = 2,6-dimesitylphenoxide; Me2Pyr = 2,5-dimethylpyrrolide) to give cis, stereoregular polymers. The tacticities of the menthyl ester derivatives of two polymers were determined for two types. For poly(7-isopropylidene-2,3-dicarbomenthoxynorbornadiene) the structure was shown to be cis,isotactic, while for poly(7-oxa-2,3-dicarbomenthoxynorbornadiene) the structure was shown to be cis,syndiotactic. A bis-trifluoromethyl-7-isopropylidene norbornadiene was not polymerized stereoregularly with W(O)(CHCMe2Ph)(Me2Pyr)(OHMT) alone, but a cis, stereoregular polymer was formed in the presence of 1 equiv of B(C6F5)3.


Journal of the American Chemical Society | 2013

Synthesis of a TREN in Which the Aryl Substituents are Part of a 45 Atom Macrocycle

Matthew F. Cain; William P. Forrest; Dmitry V. Peryshkov; Richard R. Schrock; Peter Müller

A substituted TREN has been prepared in which the aryl groups in (ArylNHCH2CH2)3N are substituted at the 3- and 5-positions with a total of six OCH2(CH2)nCH═CH2 groups (n = 1, 2, 3). Molybdenum nitride complexes, [(ArylNCH2CH2)3N]Mo(N), have been isolated as adducts that contain B(C6F5)3 bound to the nitride. Two of these [(ArylNCH2CH2)3N]Mo(NB(C6F5)3) complexes (n = 1 and 3) were crystallographically characterized. After removal of the borane from [(ArylNCH2CH2)3N]Mo(NB(C6F5)3) with PMe3, ring-closing olefin metathesis (RCM) was employed to join the aryl rings with OCH2(CH2)nCH═CH(CH2)nCH2O links (n = 1-3) between them. RCM worked best with a W(O)(CHCMe3)(Me2Pyr)(OHMT)(PMe2Ph) catalyst (OHMT = hexamethylterphenoxide, Me2Pyr = 2,5-dimethylpyrrolide) and n = 3. The macrocyclic ligand was removed from the metal through hydrolysis and isolated in 70-75% yields relative to the borane adducts. Crystallographic characterization showed that the macrocyclic TREN ligand in which n = 3 contains three cis double bonds. Hydrogenation produced a TREN in which the three links are saturated, i.e., O(CH2)10O.


Inorganic Chemistry | 2011

New iron(III) bis(acetylide) compounds based on the iron cyclam motif.

Zhi Cao; William P. Forrest; Yang Gao; Phillip E. Fanwick; Yang Zhang; Tong Ren

New trans-[Fe(cyclam)(C≡CR)(2)]OTf compounds 2a/2b [cyclam = 1,4,8,11-tetraazacyclotetradecane, R = Si(i)Pr(3) (a) or Ph (b), and OTf = trifluoromethanesulfonate] were prepared from the reaction between trans-[Fe(cyclam)(OTf)(2)]OTf (1) and LiC≡CR. The trans arrangement of the acetylide ligands in 2 was established from the X-ray diffraction study of 2a, and the density functional theory calculations revealed significant dπ-π(C≡C) interactions.


Journal of the American Society for Mass Spectrometry | 2013

Gas-Phase Reactivity of Carboxylic Acid Functional Groups with Carbodiimides

Boone M. Prentice; Joshua D. Gilbert; John R. Stutzman; William P. Forrest; Scott A. McLuckey

AbstractGas-phase modification of carboxylic acid functionalities is performed via ion/ion reactions with carbodiimide reagents [N-cyclohexyl-N′-(2-morpholinoethyl)carbodiimide (CMC) and [3-(3-Ethylcarbodiimide-1-yl)propyl]trimethylaminium (ECPT)]. Gas-phase ion/ion covalent chemistry requires the formation of a long-lived complex. In this instance, the complex is stabilized by an electrostatic interaction between the fixed charge quaternary ammonium group of the carbodiimide reagent cation and the analyte dianion. Subsequent activation results in characteristic loss of an isocyanate derivative from one side of the carbodiimide functionality, a signature for this covalent chemistry. The resulting amide bond is formed on the analyte at the site of the original carboxylic acid. Reactions involving analytes that do not contain available carboxylic acid groups (e.g., they have been converted to sodium salts) or reagents that do not have the carbodiimide functionality do not undergo a covalent reaction. This chemistry is demonstrated using PAMAM generation 0.5 dendrimer, ethylenediaminetetraacetic acid (EDTA), and the model peptide DGAILDGAILD. This work demonstrates the selective gas-phase covalent modification of carboxylic acid functionalities.


Inorganic Chemistry | 2012

Computational insights into uranium complexes supported by redox-active α-diimine ligands.

Giovanni Li Manni; Justin R. Walensky; Steven J. Kraft; William P. Forrest; Lisa M. Pérez; Michael B. Hall; Laura Gagliardi; Suzanne C. Bart

The electronic structures of two uranium compounds supported by redox-active α-diimine ligands, ((Mes)DAB(Me))(2)U(THF) (1) and Cp(2)U((Mes)DAB(Me)) (2) ((Mes)DAB(Me) = [ArN═C(Me)C(Me)═NAr]; Ar = 2,4,6-trimethylphenyl (Mes)), have been investigated using both density functional theory and multiconfigurational self-consistent field methods. Results from these studies have established that both uranium centers are tetravalent, that the ligands are reduced by two electrons, and that the ground states of these molecules are triplets. Energetically low-lying singlet states are accessible, and some transitions to these states are visible in the electronic absorption spectrum.


Organometallics | 2014

Synthesis of Molybdenum and Tungsten Alkylidene Complexes That Contain Sterically Demanding Arenethiolate Ligands

Erik M. Townsend; Jakub Hyvl; William P. Forrest; Richard R. Schrock; Peter Müller; Amir H. Hoveyda

Imido alkylidene complexes of Mo and W and oxo alkylidene complexes of W that contain thiophenoxide ligands of the type S-2,3,5,6-Ph4C6H (STPP) and S-2,6-(mesityl)2C6H3 (SHMT = S-hexamethylterphenyl) have been prepared in order to compare their metathesis activity with that of the analogous phenoxide complexes. All thiolate complexes were significantly slower (up to ∼10× slower) for the metathesis homocoupling of 1-octene or polymerization of 2,3-dicarbomethoxynorbornene, and none of them was Z-selective. The slower rates could be attributed to the greater σ-donating ability of a thiophenoxide versus the analogous phenoxide and consequently a higher electron density at the metal in the thiophenoxide complexes.


Chemical Communications | 2012

Reductive heterocoupling mediated by Cp*2U(2,2′-bpy)

Adil Mohammad; Dennis P. Cladis; William P. Forrest; Phillip E. Fanwick; Suzanne C. Bart

Collaboration


Dive into the William P. Forrest's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard R. Schrock

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dmitry V. Peryshkov

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Müller

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge