Willy A. M. van den Berg
Wageningen University and Research Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Willy A. M. van den Berg.
The Plant Cell | 2010
Corrado Viotti; Julia Bubeck; York-Dieter Stierhof; Melanie Krebs; Markus Langhans; Willy A. M. van den Berg; Walter Van Dongen; Sandra Richter; Niko Geldner; Junpei Takano; Gerd Jürgens; Sacco C. de Vries; David G. Robinson; Karin Schumacher
This study examines secretory and endocytotic trafficking in Arabidopsis by tracking the movement of a brassinosteroid receptor and a boron exporter through the endomembrane system. Both endocytotic and secretory cargo travel through the trans-Golgi network/early endosome (TGN/EE), and the TGN/EE is shown to be an independent organelle that only transiently associates with the Golgi. Plants constantly adjust their repertoire of plasma membrane proteins that mediates transduction of environmental and developmental signals as well as transport of ions, nutrients, and hormones. The importance of regulated secretory and endocytic trafficking is becoming increasingly clear; however, our knowledge of the compartments and molecular machinery involved is still fragmentary. We used immunogold electron microscopy and confocal laser scanning microscopy to trace the route of cargo molecules, including the BRASSINOSTEROID INSENSITIVE1 receptor and the REQUIRES HIGH BORON1 boron exporter, throughout the plant endomembrane system. Our results provide evidence that both endocytic and secretory cargo pass through the trans-Golgi network/early endosome (TGN/EE) and demonstrate that cargo in late endosomes/multivesicular bodies is destined for vacuolar degradation. Moreover, using spinning disc microscopy, we show that TGN/EEs move independently and are only transiently associated with an individual Golgi stack.
Cell | 2014
D. Roeland Boer; Alejandra Freire-Rios; Willy A. M. van den Berg; Terrens Saaki; Iain W. Manfield; Stefan Kepinski; Irene López-Vidrieo; José Manuel Franco-Zorrilla; Sacco C. de Vries; Roberto Solano; Dolf Weijers; Miquel Coll
Auxin regulates numerous plant developmental processes by controlling gene expression via a family of functionally distinct DNA-binding auxin response factors (ARFs), yet the mechanistic basis for generating specificity in auxin response is unknown. Here, we address this question by solving high-resolution crystal structures of the pivotal Arabidopsis developmental regulator ARF5/MONOPTEROS (MP), its divergent paralog ARF1, and a complex of ARF1 and a generic auxin response DNA element (AuxRE). We show that ARF DNA-binding domains also homodimerize to generate cooperative DNA binding, which is critical for in vivo ARF5/MP function. Strikingly, DNA-contacting residues are conserved between ARFs, and we discover that monomers have the same intrinsic specificity. ARF1 and ARF5 homodimers, however, differ in spacing tolerated between binding sites. Our data identify the DNA-binding domain as an ARF dimerization domain, suggest that ARF dimers bind complex sites as molecular calipers with ARF-specific spacing preference, and provide an atomic-scale mechanistic model for specificity in auxin response.
FEBS Journal | 2008
Nicole G. H. Leferink; Willy A. M. van den Berg; Willem J. H. van Berkel
l‐Galactono‐1,4‐lactone dehydrogenase (GALDH; ferricytochrome c oxidoreductase; EC 1.3.2.3) is a mitochondrial flavoenzyme that catalyzes the final step in the biosynthesis of vitamin C (l‐ascorbic acid) in plants. In the present study, we report on the biochemical properties of recombinant Arabidopsis thaliana GALDH (AtGALDH). AtGALDH oxidizes, in addition to l‐galactono‐1,4‐lactone (Km = 0.17 mm, kcat = 134 s−1), l‐gulono‐1,4‐lactone (Km = 13.1 mm, kcat = 4.0 s−1) using cytochrome c as an electron acceptor. Aerobic reduction of AtGALDH with the lactone substrate generates the flavin hydroquinone. The two‐electron reduced enzyme reacts poorly with molecular oxygen (kox = 6 × 102 m−1·s−1). Unlike most flavoprotein dehydrogenases, AtGALDH forms a flavin N5 sulfite adduct. Anaerobic photoreduction involves the transient stabilization of the anionic flavin semiquinone. Most aldonolactone oxidoreductases contain a histidyl‐FAD as a covalently bound prosthetic group. AtGALDH lacks the histidine involved in covalent FAD binding, but contains a leucine instead (Leu56). Leu56 replacements did not result in covalent flavinylation but revealed the importance of Leu56 for both FAD‐binding and catalysis. The Leu56 variants showed remarkable differences in Michaelis constants for both l‐galactono‐1,4‐lactone and l‐gulono‐1,4‐lactone and released their FAD cofactor more easily than wild‐type AtGALDH. The present study provides the first biochemical characterization of AtGALDH and some active site variants. The role of GALDH and the possible involvement of other aldonolactone oxidoreductases in the biosynthesis of vitamin C in A. thaliana are also discussed.
Plant Physiology | 2011
Bert De Rybel; Willy A. M. van den Berg; Annemarie S. Lokerse; Che-Yang Liao; Hilda van Mourik; Barbara Möller; Cristina I. Llavata Peris; Dolf Weijers
With plant molecular biology in the omics era, there is a need for simple cloning strategies that allow high throughput to systematically study the expression and function of large numbers of genes. Such strategies would facilitate the analysis of gene (sub)families and/or sets of coexpressed genes identified by transcriptomics. Here, we provide a set of 34 ligation-independent cloning (LIC) binary vectors for expression analysis, protein localization studies, and misexpression that will be made freely available. This set of plant LIC vectors offers a fast alternative to standard cloning strategies involving ligase or recombination enzyme technology. We demonstrate the use of this strategy and our new vectors by analyzing the expression domains of genes belonging to two subclades of the basic helix-loop-helix transcription factor family. We show that neither the closest homologs of TARGET OF MONOPTEROS7 (TMO7/ATBS1) nor the members of the ATBS1 INTERACTING FACTOR subclade of putative TMO7 interactors are expressed in the embryo and that there is very limited coexpression in the primary root meristem. This suggests that these basic helix-loop-helix transcription factors are most likely not involved in TMO7-dependent root meristem initiation.
Applied and Environmental Microbiology | 2009
Douwe van der Veen; José Miguel P. Ferreira de Oliveira; Willy A. M. van den Berg; Leo H. de Graaff
ABSTRACT The proper design of DNA microarray experiments requires knowledge of biological and technical variation of the studied biological model. For the filamentous fungus Aspergillus niger, a fast, quantitative real-time PCR (qPCR)-based hierarchical experimental design was used to determine this variation. Analysis of variance components determined the contribution of each processing step to total variation: 68% is due to differences in day-to-day handling and processing, while the fermentor vessel, cDNA synthesis, and qPCR measurement each contributed equally to the remainder of variation. The global transcriptional response to d-xylose was analyzed using Affymetrix microarrays. Twenty-four statistically differentially expressed genes were identified. These encode enzymes required to degrade and metabolize d-xylose-containing polysaccharides, as well as complementary enzymes required to metabolize complex polymers likely present in the vicinity of d-xylose-containing substrates. These results confirm previous findings that the d-xylose signal is interpreted by the fungus as the availability of a multitude of complex polysaccharides. Measurement of a limited number of transcripts in a defined experimental setup followed by analysis of variance components is a fast and reliable method to determine biological and technical variation present in qPCR and microarray studies. This approach provides important parameters for the experimental design of batch-grown filamentous cultures and facilitates the evaluation and interpretation of microarray data.
FEBS Letters | 2009
Nicole G. H. Leferink; Mac Donald F. Jose; Willy A. M. van den Berg; Willem J. H. van Berkel
The flavoenzyme l‐galactono‐γ‐lactone dehydrogenase (GALDH) catalyzes the terminal step of vitamin C biosynthesis in plants. Little is known about the catalytic mechanism of GALDH and related aldonolactone oxidoreductases. Here we identified an essential Glu–Arg pair in the active site of GALDH from Arabidopsis thaliana. Glu386 and Arg388 variants show high K m values for l‐galactono‐1,4‐lactone and low turnover rates. Arg388 is crucial for the stabilization of the anionic form of the reduced FAD cofactor. Glu386 is involved in productive substrate binding. The E386D variant has lost its specificity for l‐galactono‐1,4‐lactone and shows the highest catalytic efficiency with l‐gulono‐1,4‐lactone.
Methods of Molecular Biology | 2015
Jos R. Wendrich; Che-Yang Liao; Willy A. M. van den Berg; Bert De Rybel; Dolf Weijers
Molecular cloning is a vital step in much of todays plant biological research. Particularly, when a species is amenable to transgenic manipulation, cloning enables detailed study of gene and protein function in vivo. Therefore, accurate, consistent, and efficient cloning methods have the potential to accelerate biological research. Traditional restriction-enzyme/ligase-based strategies are often inefficient, while novel alternative methods can be less economical. We have recently optimized a method for Ligation-Independent Cloning (LIC) that is both efficient and economical. We have developed a large set of LIC-compatible plasmids for application in plant research. These include dedicated vectors for gene expression analysis, protein localization studies, and protein misexpression. We describe a detailed protocol that allows the reliable generation of plant transformation-ready constructs from PCR fragments in 2-3 days.
PLOS ONE | 2012
Simon Lindhoud; Willy A. M. van den Berg; Robert H. H. van den Heuvel; Albert J. R. Heck; Carlo P. M. van Mierlo; Willem J. H. van Berkel
In organisms, various protective mechanisms against oxidative damaging of proteins exist. Here, we show that cofactor binding is among these mechanisms, because flavin mononucleotide (FMN) protects Azotobacter vinelandii flavodoxin against hydrogen peroxide-induced oxidation. We identify an oxidation sensitive cysteine residue in a functionally important loop close to the cofactor, i.e., Cys69. Oxidative stress causes dimerization of apoflavodoxin (i.e., flavodoxin without cofactor), and leads to consecutive formation of sulfinate and sulfonate states of Cys69. Use of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) reveals that Cys69 modification to a sulfenic acid is a transient intermediate during oxidation. Dithiothreitol converts sulfenic acid and disulfide into thiols, whereas the sulfinate and sulfonate forms of Cys69 are irreversible with respect to this reagent. A variable fraction of Cys69 in freshly isolated flavodoxin is in the sulfenic acid state, but neither oxidation to sulfinic and sulfonic acid nor formation of intermolecular disulfides is observed under oxidising conditions. Furthermore, flavodoxin does not react appreciably with NBD-Cl. Besides its primary role as redox-active moiety, binding of flavin leads to considerably improved stability against protein unfolding and to strong protection against irreversible oxidation and other covalent thiol modifications. Thus, cofactors can protect proteins against oxidation and modification.
Plant Journal | 2011
Eike H. Rademacher; Barbara Möller; Annemarie S. Lokerse; Cristina I. Llavata-Peris; Willy A. M. van den Berg; Dolf Weijers
Microbial Cell Factories | 2014
Laura van der Straat; Marloes Vernooij; Marieke Lammers; Willy A. M. van den Berg; Tom Schonewille; Jan Cordewener; Ingrid M. van der Meer; A.J. Koops; Leo H. de Graaff