Wilton B. Williams
Duke University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wilton B. Williams.
Science | 2015
Wilton B. Williams; Hua-Xin Liao; M. Anthony Moody; Thomas B. Kepler; S. Munir Alam; Feng Gao; Kevin Wiehe; Ashley M. Trama; Kathryn Jones; Ruijun Zhang; Hongshuo Song; Dawn J. Marshall; John F. Whitesides; Kaitlin Sawatzki; Axin Hua; Pinghuang Liu; Matthew Zirui Tay; Kelly E. Seaton; Xiaoying Shen; Andrew Foulger; Krissey E. Lloyd; Robert Parks; Justin Pollara; Guido Ferrari; Jae Sung Yu; Nathan Vandergrift; David C. Montefiori; Magdalena E. Sobieszczyk; Scott M. Hammer; Shelly Karuna
Microbiota can mislead antibodies Unlike the response to many viral infections, most people do not produce antibodies capable of clearing HIV-1. Non-neutralizing antibodies that target HIV-1s envelope glycoprotein (Env) typically dominate the response, which is generated by B cells that cross-react with Env and the intestinal microbiota. Williams et al. analyzed samples from individuals who had received a vaccine containing the Env protein, including the gp41 subunit. Most of the antibodies were non-neutralizing and targeted gp41. The antibodies also reacted to intestinal microbiota, suggesting that preexisting immunity to microbial communities skews vaccineinduced immune responses toward an unproductive target. Science, this issue 10.1126/science.aab1253. The antibody response to an HIV-1 vaccine is dominated by preexisting immunity to microbiota. INTRODUCTION Inducing protective antibodies is a key goal in HIV-1 vaccine development. In acute HIV-1 infection, the dominant initial plasma antibody response is to the gp41 subunit of the envelope (Env) glycoprotein of the virus. These antibodies derive from polyreactive B cells that cross-react with Env and intestinal microbiota (IM) and are unable to neutralize HIV-1. However, whether a similar gp41-IM cross-reactive antibody response would occur in the setting of HIV-1 Env vaccination is unknown. RATIONALE We studied antibody responses in individuals who received a DNA prime vaccine, with a recombinant adenovirus serotype 5 (rAd5) boost (DNA prime–rAd5 boost), a vaccine that included HIV-1 gag, pol, and nef genes, as well as a trivalent mixture of clade A, B, and C env gp140 genes containing both gp120 and gp41 components. This vaccine showed no efficacy. Thus, study of these vaccinees provided an opportunity to determine whether the Env-reactive antibody response in the setting of Env vaccination was dominated by gp41-reactive antibodies derived from Env-IM cross-reactive B cells. RESULTS We found that vaccine-induced antibodies to HIV-1 Env dominantly focused on gp41 compared with gp120 by both serologic analysis and by vaccine-Env memory B cells sorted by flow cytometry (see the figure). Remarkably, the majority of HIV-1 Env-reactive memory B cells induced by the vaccine produced gp41-reactive antibodies, and the majority of gp41-targeted antibodies used restricted immunoglobulin heavy chain variable genes. Functionally, none of the gp41-reactive antibodies could neutralize HIV, and the majority could not mediate antibody-dependent cellular cytotoxicity. Most of the vaccine-induced gp41-reactive antibodies cross-reacted with host and IM antigens. Two of the candidate gp41-intestinal cross-reactive antigens were bacterial RNA polymerase and pyruvate-flavodoxin oxidoreductase, which shared sequence similarities with the heptad repeat 1 region of HIV gp41. Next-generation sequencing of vaccinee B cells demonstrated a prevaccination antibody that was reactive to both IM and the vaccine–Env gp140, which demonstrated the presence of a preexisting pool of gp41-IM cross-reactive B cells from which the vaccine gp41-reactive antibody response was derived. CONCLUSION In this study, we found that the DNA prime–rAd5 boost HIV-1 vaccine induced a gp41-reactive antibody response that was mainly non-neutralizing and derived from an IM-gp41 cross-reactive B cell pool. These findings have important implications for HIV-1 vaccine design. Because IM antigens shape the B cell repertoire from birth, our data raise the hypothesis that neonatal immunization with HIV-1 envelope may be able to imprint the B cell repertoire to respond to envelope antigenic sites that may otherwise be subdominant or disfavored, such as Env broadly neutralizing antibody epitopes. Our data also suggest that deleting or modifying amino acids in the gp41 heptad repeat 1 region of Env-containing vaccine immunogens may avoid IM-gp41 cross-reactivity. Thus, an obstacle that may need to be overcome for development of a successful HIV vaccine is diversion of potentially protective HIV-1 antibody responses by preexisting envelope-IM cross-reactive pools of B cells. Diversion of HIV-1 vaccine–induced immunity by Env gp41–microbiota cross-reactive antibodies. Immunization of humans with a vaccine containing HIV-1 Env gp120 and gp41 components, including the membrane-proximal external region (MPER) of Env, induced a dominant B cell response primarily from a preexisting pool of gp41-IM cross-reactive B cells. This response diverted the vaccine-stimulated antibody response away from smaller subdominant B cell pools capable of reacting with potentially protective epitopes on HIV-1 Env. An HIV-1 DNA prime vaccine, with a recombinant adenovirus type 5 (rAd5) boost, failed to protect from HIV-1 acquisition. We studied the nature of the vaccine-induced antibody (Ab) response to HIV-1 envelope (Env). HIV-1–reactive plasma Ab titers were higher to Env gp41 than to gp120, and repertoire analysis demonstrated that 93% of HIV-1–reactive Abs from memory B cells responded to Env gp41. Vaccine-induced gp41-reactive monoclonal antibodies were non-neutralizing and frequently polyreactive with host and environmental antigens, including intestinal microbiota (IM). Next-generation sequencing of an immunoglobulin heavy chain variable region repertoire before vaccination revealed an Env-IM cross-reactive Ab that was clonally related to a subsequent vaccine-induced gp41-reactive Ab. Thus, HIV-1 Env DNA-rAd5 vaccine induced a dominant IM-polyreactive, non-neutralizing gp41-reactive Ab repertoire response that was associated with no vaccine efficacy.
Science Translational Medicine | 2017
Mattia Bonsignori; Edward F. Kreider; Daniela Fera; R. Ryan Meyerhoff; Todd Bradley; Kevin Wiehe; S. Munir Alam; Baptiste Aussedat; William E. Walkowicz; Kwan-Ki Hwang; Kevin O. Saunders; Ruijun Zhang; Morgan A. Gladden; Anthony Monroe; Amit Kumar; Shi-Mao Xia; Melissa Cooper; Mark K. Louder; Krisha McKee; Robert T. Bailer; Brendan W. Pier; Claudia A. Jette; Garnett Kelsoe; Wilton B. Williams; Lynn Morris; John C. Kappes; Kshitij Wagh; Gift Kamanga; Myron S. Cohen; Peter Hraber
Identification of maturation stages of V3-glycan neutralizing antibodies explains the long duration required for their development. Guiding anti-glycan antibodies Although it typically evades the immune system, HIV does have sites of vulnerability that can be targeted in vaccine design. One such site is a glycan near the V3 loop of the envelope protein, but antibodies recognizing this epitope are often not detected in people infected with HIV. Alam et al. designed a synthetic glycopeptide that can identify B cells targeting this epitope and also used it to immunize macaques. Bonsignori et al. used this synthetic glycopeptide and other baits to study the V3-glycan antibody responses of an HIV-infected individual that developed broadly neutralizing antibodies. They also examined viral evolution over time and found clues as to why these types of antibodies do not develop more often. These tools and findings could pave the way for a vaccine that protects against diverse strains of HIV. A preventive HIV-1 vaccine should induce HIV-1–specific broadly neutralizing antibodies (bnAbs). However, bnAbs generally require high levels of somatic hypermutation (SHM) to acquire breadth, and current vaccine strategies have not been successful in inducing bnAbs. Because bnAbs directed against a glycosylated site adjacent to the third variable loop (V3) of the HIV-1 envelope protein require limited SHM, the V3-glycan epitope is an attractive vaccine target. By studying the cooperation among multiple V3-glycan B cell lineages and their coevolution with autologous virus throughout 5 years of infection, we identify key events in the ontogeny of a V3-glycan bnAb. Two autologous neutralizing antibody lineages selected for virus escape mutations and consequently allowed initiation and affinity maturation of a V3-glycan bnAb lineage. The nucleotide substitution required to initiate the bnAb lineage occurred at a low-probability site for activation-induced cytidine deaminase activity. Cooperation of B cell lineages and an improbable mutation critical for bnAb activity defined the necessary events leading to breadth in this V3-glycan bnAb lineage. These findings may, in part, explain why initiation of V3-glycan bnAbs is rare, and suggest an immunization strategy for inducing similar V3-glycan bnAbs.
Immunological Reviews | 2017
Mattia Bonsignori; Hua-Xin Liao; Feng Gao; Wilton B. Williams; S. Munir Alam; David C. Montefiori; Barton F. Haynes
Induction of HIV‐1 broadly neutralizing antibodies (bnAbs) to date has only been observed in the setting of HIV‐1 infection, and then only years after HIV transmission. Thus, the concept has emerged that one path to induction of bnAbs is to define the viral and immunologic events that occur during HIV‐1 infection, and then to mimic those events with a vaccine formulation. This concept has led to efforts to map both virus and antibody events that occur from the time of HIV‐1 transmission to development of bnAbs. This work has revealed that a virus‐antibody “arms race” occurs in which a HIV‐1 transmitted/founder (TF) Env induces autologous neutralizing antibodies that can not only neutralize the TF virus but also can select virus escape mutants that in turn select affinity‐matured neutralizing antibodies. From these studies has come a picture of bnAb development that has led to new insights in host–pathogen interactions and, as well, led to insight into immunologic mechanisms of control of bnAb development. Here, we review the progress to date in elucidating bnAb B cell lineages in HIV‐1 infection, discuss new research leading to understanding the immunologic mechanisms of bnAb induction, and address issues relevant to the use of this information for the design of new HIV‐1 sequential envelope vaccine candidates.
Retrovirology | 2012
Li Yin; Li Liu; Yijun Sun; Wei Hou; Amanda Lowe; Brent P Gardner; Marco Salemi; Wilton B. Williams; William G. Farmerie; John W. Sleasman; Maureen M. Goodenow
BackgroundDeep sequencing provides the basis for analysis of biodiversity of taxonomically similar organisms in an environment. While extensively applied to microbiome studies, population genetics studies of viruses are limited. To define the scope of HIV-1 population biodiversity within infected individuals, a suite of phylogenetic and population genetic algorithms was applied to HIV-1 envelope hypervariable domain 3 (Env V3) within peripheral blood mononuclear cells from a group of perinatally HIV-1 subtype B infected, therapy-naïve children.ResultsBiodiversity of HIV-1 Env V3 quasispecies ranged from about 70 to 270 unique sequence clusters across individuals. Viral population structure was organized into a limited number of clusters that included the dominant variants combined with multiple clusters of low frequency variants. Next generation viral quasispecies evolved from low frequency variants at earlier time points through multiple non-synonymous changes in lineages within the evolutionary landscape. Minor V3 variants detected as long as four years after infection co-localized in phylogenetic reconstructions with early transmitting viruses or with subsequent plasma virus circulating two years later.ConclusionsDeep sequencing defines HIV-1 population complexity and structure, reveals the ebb and flow of dominant and rare viral variants in the host ecosystem, and identifies an evolutionary record of low-frequency cell-associated viral V3 variants that persist for years. Bioinformatics pipeline developed for HIV-1 can be applied for biodiversity studies of virome populations in human, animal, or plant ecosystems.
Journal of Virology | 2016
Navid Madani; Amy M. Princiotto; David Easterhoff; Todd Bradley; Kan Luo; Wilton B. Williams; Hua-Xin Liao; M. Anthony Moody; Ganesh E. Phad; Néstor Vázquez Bernat; Bruno Melillo; Sampa Santra; Amos B. Smith; Gunilla B. Karlsson Hedestam; Barton F. Haynes; Joseph Sodroski
ABSTRACT The human immunodeficiency virus (HIV-1) envelope glycoproteins (Env) mediate virus entry through a series of complex conformational changes triggered by binding to the receptors CD4 and CCR5/CXCR4. Broadly neutralizing antibodies that recognize conserved Env epitopes are thought to be an important component of a protective immune response. However, to date, HIV-1 Env immunogens that elicit broadly neutralizing antibodies have not been identified, creating hurdles for vaccine development. Small-molecule CD4-mimetic compounds engage the CD4-binding pocket on the gp120 exterior Env and induce Env conformations that are highly sensitive to neutralization by antibodies, including antibodies directed against the conserved Env region that interacts with CCR5/CXCR4. Here, we show that CD4-mimetic compounds sensitize primary HIV-1 to neutralization by antibodies that can be elicited in monkeys and humans within 6 months by several Env vaccine candidates, including gp120 monomers. Monoclonal antibodies directed against the gp120 V2 and V3 variable regions were isolated from the immunized monkeys and humans; these monoclonal antibodies neutralized a primary HIV-1 only when the virus was sensitized by a CD4-mimetic compound. Thus, in addition to their direct antiviral effect, CD4-mimetic compounds dramatically enhance the HIV-1-neutralizing activity of antibodies that can be elicited with currently available immunogens. Used as components of microbicides, the CD4-mimetic compounds might increase the protective efficacy of HIV-1 vaccines. IMPORTANCE Preventing HIV-1 transmission is a high priority for global health. Eliciting antibodies that can neutralize transmitted strains of HIV-1 is difficult, creating problems for the development of an effective vaccine. We found that small-molecule CD4-mimetic compounds sensitize HIV-1 to antibodies that can be elicited in vaccinated humans and monkeys. These results suggest an approach to prevent HIV-1 sexual transmission in which a virus-sensitizing microbicide is combined with a vaccine.
Cell Host & Microbe | 2018
Kevin Wiehe; Todd Bradley; R. Ryan Meyerhoff; Connor Hart; Wilton B. Williams; David Easterhoff; William J. Faison; Thomas B. Kepler; Kevin O. Saunders; S. Munir Alam; Mattia Bonsignori; Barton F. Haynes
Summary HIV-1 broadly neutralizing antibodies (bnAbs) require high levels of activation-induced cytidine deaminase (AID)-catalyzed somatic mutations for optimal neutralization potency. Probable mutations occur at sites of frequent AID activity, while improbable mutations occur where AID activity is infrequent. One bottleneck for induction of bnAbs is the evolution of viral envelopes (Envs) that can select bnAb B cell receptors (BCR) with improbable mutations. Here we define the probability of bnAb mutations and demonstrate the functional significance of key improbable mutations in three bnAb B cell lineages. We show that bnAbs are enriched for improbable mutations, which implies that their elicitation will be critical for successful vaccine induction of potent bnAb B cell lineages. We discuss a mutation-guided vaccine strategy for identification of Envs that can select B cells with BCRs that have key improbable mutations required for bnAb development.
bioRxiv | 2018
Kevin Wiehe; Todd Bradley; R. Ryan Meyerhoff; Connor Hart; Wilton B. Williams; David Easterhoff; William J. Faison; Thomas B. Kepler; Kevin O. Saunders; S. Munir Alam; Mattia Bonsignori; Barton F. Haynes
HIV-1 broadly neutralizing antibodies (bnAbs) require high levels of activation-induced cytidine deaminase (AID) catalyzed somatic mutations for optimal neutralization potency. Probable mutations occur at sites of frequent AID activity, while improbable mutations occur where AID activity is infrequent. One bottleneck for induction of bnAbs is the evolution of viral envelopes (Envs) that can select bnAb B cell receptors (BCR) with improbable mutations. Here we define the probability of bnAb mutations and demonstrate the functional significance of key improbable mutations in three bnAb B cell lineages. We show that bnAbs are enriched for improbable mutations, implying their elicitation will be critical for successful vaccine induction of potent bnAb B cell lineages. We outline a mutation-guided vaccine strategy for identification of Envs that can select B cells with BCRs with key improbable mutations required for bnAb development. Our analysis suggests that through generations of viral escape, Env trimers evolved to hide in low probability regions of antibody sequence space.
Retrovirology | 2012
Wilton B. Williams; Kathryn Jones; A Krambrink; Doug Grove; Pinghuang Liu; Nicole L. Yates; Ma Moody; Guido Ferrari; Justin Pollara; Zoe Moodie; Cecilia Morgan; H Liao; David C. Montefiori; Christina Ochsenbauer; John C. Kappes; Scott M. Hammer; John R. Mascola; Richard A. Koup; Lawrence Corey; Gary J. Nabel; Peter B. Gilbert; Gavin J. Churchyard; Michael C. Keefer; Barney S. Graham; Barton F. Haynes; Georgia D. Tomaras
Multiple antibody specificities (gp41, V1V2, and V3) elicited in the phase II multiclade (A, B, C) HIV-1 DNA prime, rAd5 boost vaccine trial WB Williams, K Jones, A Krambrink, D Grove, P Liu, NL Yates, MA Moody, G Ferrari, J Pollara, Z Moodie, CA Morgan, H Liao, DC Montefiori, C Ochsenbauer, J Kappes, S Hammer, J Mascola, R Koup, L Corey, G Nabel, P Gilbert, G Churchyard, M Keefer, BS Graham, BF Haynes, GD Tomaras
Current Opinion in Hiv and Aids | 2018
Wilton B. Williams; Qifeng Han; Barton F. Haynes
Purpose of review A successful human immunodeficiency virus-type 1 (HIV-1) vaccine will require immunogens that induce protective immune responses. However, recent studies suggest that the response to HIV-1 and perhaps other viruses may be altered by immune system exposure to intestinal microbiota-antigens. This review will discuss select aspects of these studies. Recent findings Naïve CD4 T and B cell repertoires can be imprinted by intestinal microbiota-antigens to respond to virus epitopes prior to virus infection. A multiclade envelope (Env) gp145 DNA prime, recombinant adenovirus type 5 boost vaccine tested in a HIV Vaccine Trials Network (HVTN) phase IIb human vaccine efficacy trial (HVTN 505) induced a dominant gp41-reactive antibody response that was non-neutralizing and cross-reactive with intestinal microbiota. This vaccine regimen also induced a dominant gp41-reactive, intestinal microbiota-cross-reactive gp41 antibody response in neonatal and adult Rhesus macaques. Studies of naïve CD4 T cells have demonstrated cross-reactivity to both HIV-1 and influenza peptides. Summary HIV-1 Env vaccine-induced CD4 T and B cell responses can originate from a pool of intestinal microbiota-cross-reactive immune cells. Moreover, intestinal microbiota-cross-reactive HIV-1 Env antibodies are ineffective in protection against HIV-1 infection. Thus, intestinal microbiota-imprinting of the B cell repertoire may be one of several roadblocks to the induction of protective HIV-1 antibodies.
Journal of Virology | 2017
Qifeng Han; Wilton B. Williams; Kevin O. Saunders; Kelly E. Seaton; Kevin Wiehe; Nathan Vandergrift; Tarra Von Holle; Ashley M. Trama; Robert Parks; Kan Luo; Thaddeus C. Gurley; Thomas B. Kepler; Dawn J. Marshall; David C. Montefiori; Laura L. Sutherland; Munir Alam; John F. Whitesides; Cindy M. Bowman; Sallie R. Permar; Barney S. Graham; John R. Mascola; Patrick C. Seed; Koen K. A. Van Rompay; Georgia D. Tomaras; M. Anthony Moody; Barton F. Haynes
ABSTRACT Dominant antibody responses in vaccinees who received the HIV-1 multiclade (A, B, and C) envelope (Env) DNA/recombinant adenovirus virus type 5 (rAd5) vaccine studied in HIV-1 Vaccine Trials Network (HVTN) efficacy trial 505 (HVTN 505) targeted Env gp41 and cross-reacted with microbial antigens. In this study, we asked if the DNA/rAd5 vaccine induced a similar antibody response in rhesus macaques (RMs), which are commonly used as an animal model for human HIV-1 infections and for testing candidate HIV-1 vaccines. We also asked if gp41 immunodominance could be avoided by immunization of neonatal RMs during the early stages of microbial colonization. We found that the DNA/rAd5 vaccine elicited a higher frequency of gp41-reactive memory B cells than gp120-memory B cells in adult and neonatal RMs. Analysis of the vaccine-induced Env-reactive B cell repertoire revealed that the majority of HIV-1 Env-reactive antibodies in both adult and neonatal RMs were targeted to gp41. Interestingly, a subset of gp41-reactive antibodies isolated from RMs cross-reacted with host antigens, including autologous intestinal microbiota. Thus, gp41-containing DNA/rAd5 vaccine induced dominant gp41-microbiota cross-reactive antibodies derived from blood memory B cells in RMs as observed in the HVTN 505 vaccine efficacy trial. These data demonstrated that RMs can be used to investigate gp41 immunodominance in candidate HIV-1 vaccines. Moreover, colonization of neonatal RMs occurred within the first week of life, and immunization of neonatal RMs during this time also induced a dominant gp41-reactive antibody response. IMPORTANCE Our results are critical to current work in the HIV-1 vaccine field evaluating the phenomenon of gp41 immunodominance induced by HIV-1 Env gp140 in RMs and humans. Our data demonstrate that RMs are an appropriate animal model to study this phenomenon and to determine the immunogenicity in new HIV-1 Env trimer vaccine designs. The demonstration of gp41 immunodominance in memory B cells of both adult and neonatal RMs indicated that early vaccination could not overcome gp41 dominant responses.