Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wim De Borggraeve is active.

Publication


Featured researches published by Wim De Borggraeve.


Journal of Physical Chemistry A | 2008

Ratiometric, Fluorescent BODIPY Dye with Aza Crown Ether Functionality: Synthesis, Solvatochromism, and Metal Ion Complex Formation

Wenwu Qin; Mukulesh Baruah; Michel Sliwa; Mark Van der Auweraer; Wim De Borggraeve; David Beljonne; Bernard Van Averbeke; N. Boens

A new pH and metal ion-responsive BODIPY-based fluorescent probe with an aza crown ether subunit has been synthesized via condensation of 4-(1,4,7,10-tetraoxa-13-aza-cyclopentadec-13-yl)-benzaldehyde with the appropriate 1,3,5,7-tetramethyl substituted boron dipyrromethene moiety. Steady-state and time-resolved fluorometries have been used to study the spectroscopic and photophysical characteristics of this probe in various solvents. The fluorescence properties of the dye are strongly solvent dependent: increasing the solvent polarity leads to lower fluorescence quantum yields and lifetimes, and the wavelength of maximum fluorescence emission shifts to the red. The Catalan solvent scales are found to be the most suitable for describing the solvatochromic shifts of the fluorescence emission. Fluorescence decay profiles of the dye can be described by a single-exponential fit in nonprotic solvents, whereas two decay times are found in alcohols. Protonation as well as complex formation with several metal ions are investigated in acetonitrile as solvent via fluorometric titrations. The aza crown ether dye undergoes a reversible (de)protonation reaction (pKa = 0.09) and shows a approximately 50 nm blue shift in the excitation spectra and a 10-fold fluorescence increase upon protonation. The compound also forms 1:1 complexes with several metal ions (Li(+), Na(+), Mg(2+), Ca(2+), Ba(2+), Zn(2+)), producing large blue shifts in the excitation spectra and significant cation-induced fluorescence amplifications.


Analytical and Bioanalytical Chemistry | 2012

Selective LC-MS/MS method for the identification of BMAA from its isomers in biological samples

Liying Jiang; Benoit Aigret; Wim De Borggraeve; Zdenek Spacil; Leopold L. Ilag

Algal blooms are well-known sources of acute toxic agents that can be lethal to aquatic organisms. However, one such toxin, β-N-methylamino-l-alanine (BMAA) is also believed to cause amyotrophic lateral sclerosis, also known as Lou Gehrig’s disease. The detection and identification of BMAA in natural samples were challenging until the recent introduction of reliable methods. However, the issue of potential interference from unknown isomers of BMAA present in samples has not yet been thoroughly investigated. Based on a systematic database search, we generated a list of all theoretical BMAA structural isomers, which was subsequently narrowed down to seven possible interfering compounds for further consideration. The seven possible candidates satisfied the requirements of chemical stability and also shared important structural domains with BMAA. Two of the candidates, 2,4-diaminobutyric acid (DAB) and N-(2-aminoethyl) glycine (AEG) have recently been studied in the context of BMAA. A further isomer, β-amino-N-methyl-alanine (BAMA), has to be considered because it can potentially yield the fragment ion, which is diagnostic for BMAA. Here, we report the synthesis and analysis of BAMA, together with AEG, DAB, and other isomers that are of interest in the separation and detection of BMAA in biological samples by using either high-performance liquid chromatography or ultra-high-performance liquid chromatography coupled with tandem mass spectrometry. We detected for the first time BAMA in blue mussel and oyster samples. This work extends the previously developed liquid chromatography–tandem mass spectrometry platform Spacil et al. (Analyst 135:127, 2010) to allow BMAA isomers to be distinguished, improving the detection and identification of this important amino acid.


Chemistry: A European Journal | 2011

Rational Design, Synthesis, and Spectroscopic and Photophysical Properties of a Visible‐Light‐Excitable, Ratiometric, Fluorescent Near‐Neutral pH Indicator Based on BODIPY

Noël Boens; Wenwu Qin; Mukulesh Baruah; Wim De Borggraeve; Aleksander Filarowski; Nick Smisdom; Marcel Ameloot; Luis Crovetto; Eva M. Talavera; Jose M. Alvarez-Pez

A visible-light-excitable, ratiometric, brightly fluorescent pH indicator for measurements in the pH range 5-7 has been designed and synthesized by conjugatively linking the BODIPY fluorophore at the 3-position to the pH-sensitive ligand imidazole through an ethenyl bridge. The probe is available as cell membrane permeable methyl ester 8-(4-carbomethoxyphenyl)-4,4-difluoro-3-[2-(1H-imidazol-4-yl)ethenyl]-1,5,7-trimethyl-3a,4a-diaza-4-bora-s-indacene (I) and corresponding water-soluble sodium carboxylate, sodium 8-(4-carboxylatophenyl)-4,4-difluoro-3-[2-(1H-imidazol-4-yl)ethenyl]-1,5,7-trimethyl-3a,4a-diaza-4-bora-s-indacene (II). The fluorescence quantum yield Φ(f) of ester I is very high (0.8-1.0) in the organic solvents tested. The fluorescence lifetime (ca. 4 ns) of I in organic solvents with varying polarity/polarizability (from cyclohexane to acetonitrile) is independent of the solvent with a fluorescence rate constant k(f) of 2.4×10(8) s(-1). Probe I is readily loaded in the cytosol of live cells, where its high fluorescence intensity remains nearly constant over an extended time period. Water-soluble indicator II exhibits two acid-base equilibria in aqueous solution, characterized by pK(a) values of 6.0 and 12.6. The Φ(f) value of II in aqueous solution is high: 0.6 for the cationic and anionic forms of the imidazole ligand, and 0.8 for neutral imidazole. On protonation-deprotonation in the near-neutral pH range, UV/Vis absorption and fluorescence spectral shifts along with isosbestic and pseudo-isoemissive points are observed. This dual-excitation and dual-emission pH indicator emits intense green-yellow fluorescence at lower pH and intense orange fluorescence at higher pH. The influence of ionic strength and buffer concentration on the absorbance and steady-state fluorescence of II has also been investigated. The apparent pK(a) of the near-neutral acid-base equilibrium determined by spectrophotometric and fluorometric titration is nearly independent of the added buffer and salt concentration. In aqueous solution in the absence of buffer and in the pH range 5.20-7.45, dual exponential fluorescence decays are obtained with decay time τ(1)=4.3 ns for the cationic and τ(2)=3.3 ns for the neutral form of II. The excited-state proton exchange of II at near-neutral pH becomes reversible on addition of phosphate (H(2)PO(4)(-)/HPO(4)(2-)) buffer, and a pH-dependent change of the fluorescence decay times is induced. Global compartmental analysis of fluorescence decay traces collected as a function of pH and phosphate buffer concentration was used to recover values of the deactivation rate constants of the excited cationic (k(01)=2.4×10(8) s(-1)) and neutral (k(02)=3.0×10(8) s(-1)) forms of II.


Journal of Biological Chemistry | 2012

The C Terminus of Bax Inhibitor-1 Forms a Ca2+-permeable Channel Pore

Geert Bultynck; Santeri Kiviluoto; Nadine Henke; Hristina Ivanova; Lars Schneider; Volodymyr Rybalchenko; Tomas Luyten; Koen Nuyts; Wim De Borggraeve; Ilya Bezprozvanny; Jan B. Parys; Humbert De Smedt; Ludwig Missiaen; Axel Methner

Background: Evolutionary conserved Bax inhibitor-1 (BI-1) protects against ER stress-mediated apoptosis. Results: We identified a Ca2+-permeable channel pore in the C terminus of BI-1. Critical pore properties are an α-helical structure and two aspartate residues conserved among animals, but not among plants and yeast. Conclusion: C-terminal domain of BI-1 harbors a Ca2+-permeable channel pore. Significance: BI-1 has Ca2+ channel properties likely relevant for its function in ER stress and apoptosis. Bax inhibitor-1 (BI-1) is a multitransmembrane domain-spanning endoplasmic reticulum (ER)-located protein that is evolutionarily conserved and protects against apoptosis and ER stress. Furthermore, BI-1 is proposed to modulate ER Ca2+ homeostasis by acting as a Ca2+-leak channel. Based on experimental determination of the BI-1 topology, we propose that its C terminus forms a Ca2+ pore responsible for its Ca2+-leak properties. We utilized a set of C-terminal peptides to screen for Ca2+ leak activity in unidirectional 45Ca2+-flux experiments and identified an α-helical 20-amino acid peptide causing Ca2+ leak from the ER. The Ca2+ leak was independent of endogenous ER Ca2+-release channels or other Ca2+-leak mechanisms, namely translocons and presenilins. The Ca2+-permeating property of the peptide was confirmed in lipid-bilayer experiments. Using mutant peptides, we identified critical residues responsible for the Ca2+-leak properties of this BI-1 peptide, including a series of critical negatively charged aspartate residues. Using peptides corresponding to the equivalent BI-1 domain from various organisms, we found that the Ca2+-leak properties were conserved among animal, but not plant and yeast orthologs. By mutating one of the critical aspartate residues in the proposed Ca2+-channel pore in full-length BI-1, we found that Asp-213 was essential for BI-1-dependent ER Ca2+ leak. Thus, we elucidated residues critically important for BI-1-mediated Ca2+ leak and its potential channel pore. Remarkably, one of these residues was not conserved among plant and yeast BI-1 orthologs, indicating that the ER Ca2+-leak properties of BI-1 are an added function during evolution.


Epilepsy & Behavior | 2012

Anticonvulsant activity of bisabolene sesquiterpenoids of Curcuma longa in zebrafish and mouse seizure models

Adriana Monserrath Orellana-Paucar; Ann-Sophie K. Serruys; Tatiana Afrikanova; Jan Maes; Wim De Borggraeve; Jo Alen; Fabián León-Tamariz; Isabel María Wilches-Arizábala; Alexander D. Crawford; Peter de Witte; Camila V. Esguerra

Turmeric, obtained from the rhizomes of Curcuma longa, is used in South Asia as a traditional medicine for the treatment of epilepsy. To date, in vivo studies on the anticonvulsant activity of turmeric have focused on its principal curcuminoid, curcumin. However, poor absorption and rapid metabolism have limited the therapeutic application of curcumin in humans. To explore the therapeutic potential of turmeric for epilepsy further, we analyzed its anticonvulsant activity in a larval zebrafish seizure assay. Initial experiments revealed that the anticonvulsant activity of turmeric in zebrafish larvae cannot be explained solely by the effects of curcumin. Zebrafish bioassay-guided fractionation of turmeric identified bisabolene sesquiterpenoids as additional anticonvulsants that inhibit PTZ-induced seizures in both zebrafish and mice. Here, we present the first report of the anticonvulsant properties of bisabolene sesquiterpenoids and provide evidence which warrants further investigation toward the mechanistic understanding of their neuromodulatory activity.


Inorganic Chemistry | 2011

A Heterobimetallic Ruthenium–Gadolinium Complex as a Potential Agent for Bimodal Imaging

Geert Dehaen; Peter Verwilst; Svetlana V. Eliseeva; Sophie Laurent; Luce Vander Elst; Robert N. Muller; Wim De Borggraeve; Koen Binnemans; Tatjana N. Parac-Vogt

Trinuclear heterobimetallic Ln(III)-Ru(II) complexes (Ln = Eu, Gd) based on a 1,10-phenanthroline ligand bearing a diethylenetriaminepentaacetic acid (DTPA) core have been synthesized and fully characterized by a range of experimental techniques. The (17)O NMR and proton nuclear magnetic relaxation dispersion (NMRD) measurements of Gd(III)-Ru(II) show that, in comparison to the parent Gd-DTPA, this complex exhibits improved relaxivity, which is the result of an increase of the rotational correlation time. Relaxometry and ultrafiltration experiments indicate that the 1,10-phenanthroline ligand has a high affinity for noncovalent binding to human serum albumin, which results in a high relaxivity r(1) of 14.3 s(-1) mM(-1) at 20 MHz and 37 °C. Furthermore, the Ln(III)-Ru(II) complexes (Ln = Eu, Gd) show an intense light absorption in the visible spectral region due to metal-to-ligand charge transfer (MLCT) transitions. Upon excitation into the MLCT band at 440 nm, the complexes exhibit a bright-red luminescence centered at 610 nm, with a quantum yield of 4.7%. The luminescence lifetime equals 540 ns and is therefore long enough to exceed the fluorescent background. Monometallic lanthanide complexes have also been synthesized, and the Eu(III) analogue shows a characteristic red luminescence with a quantum yield of 0.8%. Taking into account the relaxometric and luminescent properties, the developed Gd(III)-Ru(II) complex can be considered as a potential in vitro bimodal imaging agent.


Photochemical and Photobiological Sciences | 2007

Photophysics of 3,5-diphenoxy substituted BODIPY dyes in solution

Taoufik Rohand; Jess Lycoops; Steve Smout; Els Braeken; Michel Sliwa; Mark Van der Auweraer; Wim Dehaen; Wim De Borggraeve; Noël Boens

We have prepared two fluorescent dyes derived from 8-(4-tolyl)-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene with phenoxy and (o-bromo)phenoxy substituents at the 3,5-positions by a novel nucleophilic substitution reaction of the corresponding 3,5-dichloroBODIPY analogue. UV-vis absorption, steady-state and time-resolved fluorimetry have been used to investigate their solvent-dependent photophysical properties. The two BODIPY derivatives show narrow absorption and emission bands and display small Stokes shifts. The substituents at the 3,5-positions (phenoxy in 1 and o-bromophenoxy in 2) have a minor effect on the fluorescence quantum yields (0.16-0.40 for 1, 0.17-0.44 for 2) and lifetimes (1.09-2.51 ns for 1, 1.11-2.78 ns for 2). For both compounds, the fluorescence rate constant equals (1.5 +/- 0.1) x 10(8) s(-1).


Inorganic Chemistry | 2012

Tetranuclear d-f Metallostars: Synthesis, Relaxometric, and Luminescent Properties

Geert Dehaen; Svetlana V. Eliseeva; Peter Verwilst; Sophie Laurent; Luce Vander Elst; Robert N. Muller; Wim De Borggraeve; Koen Binnemans; Tatjana N. Parac-Vogt

A novel ditopic ligand DTPA-ph-phen, based on 1,10-phenanthroline and diethylenetriaminepentaacetic acid (DTPA) units, has been designed and fully characterized by (1)H, (13)C, and 2D-COSY NMR spectroscopy, IR and electrospray ionization mass spectrometry (ESI-MS) techniques. The DTPA core of the ligand specifically binds Ln(III) ions (Ln = Eu, Gd) resulting in formation of the [Ln{DTPA-ph-phen}(H(2)O)](-) complex. The photophysical properties of the Eu(III) compound have been investigated, and the complex shows characteristic red luminescence with an overall quantum yield of 2.2%. Reaction of [Gd{DTPA-ph-phen}(H(2)O)](-) with Ru(II) leads to further self-assembly into a heterobimetallic metallostar complex containing Gd(III) and Ru(II) in a 3:1 ratio. This tetranuclear [(Gd{DTPA-ph-phen})(3)(H(2)O)(3)Ru](-) complex (Gd(3)Ru), formed by the coordination of Ru(II) to the 1,10-phenanthroline unit, has been characterized by a range of experimental techniques and evaluated toward its feasibility as a potential bimodal optical/MRI agent. The Gd(3)Ru metallostar shows intense metal-to-ligand charge transfer (MLCT) transition resulting in intense light absorption in the visible spectral region. Upon irradiation into this MLCT band at 450 nm, the Gd(3)Ru complex exhibits red broad-band luminescence in the range of 550-800 nm centered at 610 nm with a quantum yield of 4.8%. Proton nuclear magnetic relaxation dispersion (NMRD) measurements indicate that the Gd(3)Ru complex exhibits an enhanced relaxivity value r(1) of 36.0 s(-1) mM(-1) per metallostar molecule at 20 MHz and 310 K. The ability of the complex to noncovalently bind to human serum albumin (HSA) was investigated, but no significant interaction was detected.


Inorganic Chemistry | 2012

A Tripodal Ruthenium-Gadolinium Metallostar as a Potential α(v)β(3) Integrin Specific Bimodal Imaging Contrast Agent

Peter Verwilst; Svetlana V. Eliseeva; Luce Vander Elst; Carmen Burtea; Sophie Laurent; Stéphane Petoud; Robert N. Muller; Tatjana N. Parac-Vogt; Wim De Borggraeve

Gd(III)-containing metallostar contrast agents are gaining increased attention, because their architecture allows for a slower tumbling rate, which, in turn, results in larger relaxivities. So far, these metallostars find possible applications as blood pool contrast agents. In this work, the first example of a tissue-selective metallostar contrast agent is described. This RGD-peptide decorated Ru(II)(Gd(III))(3)metallostar is synthesized as an α(v)β(3)-integrin specific contrast agent, with possible applications in the detection of atherosclerotic plaques and tumor angiogenesis. The contrast agent showed a relaxivity of 9.65 s(-1) mM(-1), which represents an increase of 170%, compared to a low-molecular-weight analogue, because of a decreased tumbling rate (τ(R) = 470 ps). The presence of the MLCT band (absorption 375-500 nm, emission 525-850 nm) of the central Ru(II)(Ph-Phen)(3)-based complex grants the metallostar attractive luminescent properties. The (3)MLCT emission is characterized by a quantum yield of 4.69% and a lifetime of 804 ns, which makes it an interesting candidate for time-gated luminescence imaging. The potential application as a selective MRI contrast agent for α(v)β(3)-integrin expressing tissues is shown by an in vitro relaxometric analysis, as well as an in vitroT(1)-weighted MR image.


ACS Chemical Neuroscience | 2013

Tanshinone IIA exhibits anticonvulsant activity in zebrafish and mouse seizure models

Olivia E. Buenafe; Adriana Orellana-Paucar; Jan Maes; Hao Huang; Xuhui Ying; Wim De Borggraeve; Alexander D. Crawford; Walter Luyten; Camila V. Esguerra; Peter de Witte

Danshen or Chinese red sage (Salvia miltiorrhiza, Bunge) is used by traditional Chinese medicine (TCM) practitioners to treat neurological, cardiovascular, and cerebrovascular disorders and is included in some TCM formulations to control epileptic seizures. In this study, acetonic crude extracts of danshen inhibited pentylenetetrazol (PTZ)-induced seizure activity in zebrafish larvae. Subsequent zebrafish bioassay-guided fractionation of the extract resulted in the isolation of four major tanshinones, which suppressed PTZ-induced activity to varying degrees. One of the active tanshinones, tanshinone IIA, also reduced c-fos expression in the brains of PTZ-exposed zebrafish larvae. In rodent seizure models, tanshinone IIA showed anticonvulsive activity in the mouse 6-Hz psychomotor seizure test in a biphasic manner and modified seizure thresholds in a complex manner for the mouse i.v. PTZ seizure assay. Interestingly, tanshinone IIA is used as a prescription drug in China to address cerebral ischemia in patients. Here, we provide the first in vivo evidence demonstrating that tanshinone IIA has anticonvulsant properties as well.

Collaboration


Dive into the Wim De Borggraeve's collaboration.

Top Co-Authors

Avatar

Frans Compernolle

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Wim Dehaen

Catholic University of Leuven

View shared research outputs
Top Co-Authors

Avatar

Georges J. Hoornaert

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Luc Van Meervelt

Rega Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Jo Alen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Peter Verwilst

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Tatjana N. Parac-Vogt

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Vijaykumar G. Pawar

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Erik V. Van der Eycken

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Noël Boens

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge