Winfried Barchet
University of Bonn
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Winfried Barchet.
Nature | 2006
Thirumala-Devi Kanneganti; Nesrin Özören; Mathilde Body-Malapel; Amal O. Amer; Jong Hwan Park; Luigi Franchi; Joel Whitfield; Winfried Barchet; Marco Colonna; Peter Vandenabeele; John Bertin; Anthony J. Coyle; Ethan P. Grant; Shizuo Akira; Gabriel Núñez
Missense mutations in the CIAS1 gene cause three autoinflammatory disorders: familial cold autoinflammatory syndrome, Muckle–Wells syndrome and neonatal-onset multiple-system inflammatory disease. Cryopyrin (also called Nalp3), the product of CIAS1, is a member of the NOD-LRR protein family that has been linked to the activation of intracellular host defence signalling pathways. Cryopyrin forms a multi-protein complex termed ‘the inflammasome’, which contains the apoptosis-associated speck-like protein (ASC) and caspase-1, and promotes caspase-1 activation and processing of pro-interleukin (IL)-1β (ref. 4). Here we show the effect of cryopyrin deficiency on inflammasome function and immune responses. Cryopyrin and ASC are essential for caspase-1 activation and IL-1β and IL-18 production in response to bacterial RNA and the imidazoquinoline compounds R837 and R848. In contrast, secretion of tumour-necrosis factor-α and IL-6, as well as activation of NF-κB and mitogen-activated protein kinases (MAPKs) were unaffected by cryopyrin deficiency. Furthermore, we show that Toll-like receptors and cryopyrin control the secretion of IL-1β and IL-18 through different intracellular pathways. These results reveal a critical role for cryopyrin in host defence through bacterial RNA-mediated activation of caspase-1, and provide insights regarding the pathogenesis of autoinflammatory syndromes.
Nature Immunology | 2010
Hendrik Poeck; Michael Bscheider; Olaf Gross; Katrin Finger; Susanne Roth; Manuele Rebsamen; Nicole Hannesschläger; Martin Schlee; Simon Rothenfusser; Winfried Barchet; Hiroki Kato; Shizuo Akira; Satoshi Inoue; Stefan Endres; Christian Peschel; Gunther Hartmann; Veit Hornung; Jürgen Ruland
Interleukin 1β (IL-1β) is a potent proinflammatory factor during viral infection. Its production is tightly controlled by transcription of Il1b dependent on the transcription factor NF-κB and subsequent processing of pro-IL-1β by an inflammasome. However, the sensors and mechanisms that facilitate RNA virus–induced production of IL-1β are not well defined. Here we report a dual role for the RNA helicase RIG-I in RNA virus–induced proinflammatory responses. Whereas RIG-I-mediated activation of NF-κB required the signaling adaptor MAVS and a complex of the adaptors CARD9 and Bcl-10, RIG-I also bound to the adaptor ASC to trigger caspase-1-dependent inflammasome activation by a mechanism independent of MAVS, CARD9 and the Nod-like receptor protein NLRP3. Our results identify the CARD9–Bcl-10 module as an essential component of the RIG-I-dependent proinflammatory response and establish RIG-I as a sensor able to activate the inflammasome in response to certain RNA viruses.
Nature Immunology | 2011
Roland Züst; Luisa Cervantes-Barragan; Matthias Habjan; Reinhard Maier; Benjamin W. Neuman; John Ziebuhr; Kristy J. Szretter; Susan C. Baker; Winfried Barchet; Michael S. Diamond; Stuart G. Siddell; Burkhard Ludewig; Volker Thiel
The 5′ cap structures of higher eukaryote mRNAs have ribose 2′-O-methylation. Likewise, many viruses that replicate in the cytoplasm of eukaryotes have evolved 2′-O-methyltransferases to autonomously modify their mRNAs. However, a defined biological role for 2′-O-methylation of mRNA remains elusive. Here we show that 2′-O-methylation of viral mRNA was critically involved in subverting the induction of type I interferon. We demonstrate that human and mouse coronavirus mutants lacking 2′-O-methyltransferase activity induced higher expression of type I interferon and were highly sensitive to type I interferon. Notably, the induction of type I interferon by viruses deficient in 2′-O-methyltransferase was dependent on the cytoplasmic RNA sensor Mda5. This link between Mda5-mediated sensing of viral RNA and 2′-O-methylation of mRNA suggests that RNA modifications such as 2′-O-methylation provide a molecular signature for the discrimination of self and non-self mRNA.
Journal of Experimental Medicine | 2002
Stefanie Scheu; Judith Alferink; Tobias Pötzel; Winfried Barchet; Ulrich Kalinke; Klaus Pfeffer
The recently described tumor necrosis factor (TNF) family member LIGHT (herpes virus entry mediator [HVEM]-L/TNFSF14), a ligand for the lymphotoxin (LT)β receptor, HVEM, and DcR3, was inactivated in the mouse. In contrast to mice deficient in any other member of the LT core family, LIGHT−/− mice develop intact lymphoid organs. Interestingly, a lower percentage of LIGHT−/−LTβ−/− animals contain mesenteric lymph nodes as compared with LTβ−/− mice, whereas the splenic microarchitecture of LIGHT−/−LTβ−/− and LTβ−/− mice shows a comparable state of disruption. This suggests the existance of an additional undiscovered ligand for the LTβ receptor (LTβR) or a weak LTα3–LTβR interaction in vivo involved in the formation of secondary lymphoid organs. LIGHT acts synergistically with CD28 in skin allograft rejection in vivo. The underlying mechanism was identified in in vitro allogeneic MLR studies, showing a reduced cytotoxic T lymphocyte activity and cytokine production. Detailed analyses revealed that proliferative responses specifically of CD8+ T cells are impaired and interleukin 2 secretion of CD4+ T cells is defective in the absence of LIGHT. Furthermore, a reduced 3[H]-thymidine incorporation after T cell receptor stimulation was observed. This for the first time provides in vivo evidence for a cooperative role for LIGHT and LTβ in lymphoid organogenesis and indicates important costimulatory functions for LIGHT in T cell activation.
Journal of Experimental Medicine | 2002
Winfried Barchet; Marina Cella; Bernhard Odermatt; Carine Asselin-Paturel; Marco Colonna; Ulrich Kalinke
An effective type I interferon (IFN-α/β) response is critical for the control of many viral infections. Here we show that in vesicular stomatitis virus (VSV)-infected mouse embryonic fibroblasts (MEFs) the production of IFN-α is dependent on type I IFN receptor (IFNAR) triggering, whereas in infected mice early IFN-α production is IFNAR independent. In VSV-infected mice type I IFN is produced by few cells located in the marginal zone of the spleen. Unlike other dendritic cell (DC) subsets, FACS®-sorted CD11cintCD11b−GR-1+ DCs show high IFN-α expression, irrespective of whether they were isolated from VSV-infected IFNAR-competent or -deficient mice. Thus, VSV preferentially activates a specialized DC subset presumably located in the marginal zone to produce high-level IFN-α largely independent of IFNAR feedback signaling.
Journal of Virology | 2006
Melanie A. Samuel; Kevin Whitby; Brian C. Keller; Anantha Marri; Winfried Barchet; Bryan R. G. Williams; Robert H. Silverman; Michael Gale; Michael S. Diamond
ABSTRACT West Nile virus (WNV) is a neurotropic, mosquito-borne flavivirus that can cause lethal meningoencephalitis. Type I interferon (IFN) plays a critical role in controlling WNV replication, spread, and tropism. In this study, we begin to examine the effector mechanisms by which type I IFN inhibits WNV infection. Mice lacking both the interferon-induced, double-stranded-RNA-activated protein kinase (PKR) and the endoribonuclease of the 2′,5′-oligoadenylate synthetase-RNase L system (PKR−/− × RL−/−) were highly susceptible to subcutaneous WNV infection, with a 90% mortality rate compared to the 30% mortality rate observed in congenic wild-type mice. PKR−/− × RL−/− mice had increased viral loads in their draining lymph nodes, sera, and spleens, which led to early viral entry into the central nervous system (CNS) and higher viral burden in neuronal tissues. Although mice lacking RNase L showed a higher CNS viral burden and an increased mortality, they were less susceptible than the PKR−/− × RL−/− mice; thus, we also infer an antiviral role for PKR in the control of WNV infection. Notably, a deficiency in both PKR and RNase L resulted in a decreased ability of type I IFN to inhibit WNV in primary macrophages and cortical neurons. In contrast, the peripheral neurons of the superior cervical ganglia of PKR−/− × RL−/− mice showed no deficiency in the IFN-mediated inhibition of WNV. Our data suggest that PKR and RNase L contribute to IFN-mediated protection in a cell-restricted manner and control WNV infection in peripheral tissues and some neuronal subtypes.
Nature | 2014
Delphine Goubau; Martin Schlee; Safia Deddouche; Andrea J. Pruijssers; Thomas Zillinger; Marion Goldeck; Christine Schuberth; Annemarthe G. van der Veen; Tsutomu Fujimura; Jan Rehwinkel; Jason A. Iskarpatyoti; Winfried Barchet; Janos Ludwig; Terence S. Dermody; Gunther Hartmann; Caetano Reis e Sousa
Mammalian cells possess mechanisms to detect and defend themselves from invading viruses. In the cytosol, the RIG-I-like receptors (RLRs), RIG-I (retinoic acid-inducible gene I; encoded by DDX58) and MDA5 (melanoma differentiation-associated gene 5; encoded by IFIH1) sense atypical RNAs associated with virus infection. Detection triggers a signalling cascade via the adaptor MAVS that culminates in the production of type I interferons (IFN-α and β; hereafter IFN), which are key antiviral cytokines. RIG-I and MDA5 are activated by distinct viral RNA structures and much evidence indicates that RIG-I responds to RNAs bearing a triphosphate (ppp) moiety in conjunction with a blunt-ended, base-paired region at the 5′-end (reviewed in refs 1, 2, 3). Here we show that RIG-I also mediates antiviral responses to RNAs bearing 5′-diphosphates (5′pp). Genomes from mammalian reoviruses with 5′pp termini, 5′pp-RNA isolated from yeast L-A virus, and base-paired 5′pp-RNAs made by in vitro transcription or chemical synthesis, all bind to RIG-I and serve as RIG-I agonists. Furthermore, a RIG-I-dependent response to 5′pp-RNA is essential for controlling reovirus infection in cultured cells and in mice. Thus, the minimal determinant for RIG-I recognition is a base-paired RNA with 5′pp. Such RNAs are found in some viruses but not in uninfected cells, indicating that recognition of 5′pp-RNA, like that of 5′ppp-RNA, acts as a powerful means of self/non-self discrimination by the innate immune system.
Journal of Experimental Medicine | 2007
Amanda L. Blasius; Winfried Barchet; Marina Cella; Marco Colonna
Lymphoid organs contain a B220+CD11c+NK1.1+ cell population that was recently characterized as a novel dendritic cell (DC) subset that functionally overlaps with natural killer (NK) cells and plasmacytoid DCs (PDCs). Using Siglec-H and NK1.1 markers, we unambiguously dissected B220+CD11c+ cells and found that PDCs are the only professional interferon (IFN)-α–producing cells within this heterogeneous population. In contrast, B220+CD11c+NK1.1+ cells are a discrete NK cell subset capable of producing higher levels of IFN-γ than conventional NK cells. Unlike DCs, only a minute fraction of B220+CD11c+NK1.1+ cells in the spleen expressed major histocompatibility complex class II ex vivo or after stimulation with CpG. Consistent with being a NK cell subset, B220+CD11c+NK1.1+ cells depended primarily on interleukin 15 and common cytokine receptor γ chain signaling for their development. In terms of function, expression of distinctive cell surface receptors, and location in lymphoid organs, NK1.1+B220+CD11c+ appear to be the murine equivalent of human CD56bright NK cells.
Journal of Immunology | 2005
Alexander S. Krupnick; Andrew E. Gelman; Winfried Barchet; Steve Richardson; Friederike Kreisel; Laurence A. Turka; Marco Colonna; G. Alexander Patterson; Daniel Kreisel
Unlike graft-resident donor-derived hemopoietic APCs, which decrease in number over time after transplantation, vascular endothelial cells are lifelong residents of a vascularized allograft. Endothelial cells are potent APCs for allogeneic CD8+ T lymphocytes but are unable to induce proliferation of allogeneic CD4+ T lymphocytes. Although the reason for this differential response has been poorly understood, here we report that alloantigen presentation by vascular endothelium to CD4+ T lymphocytes activates and induces CD4+25+Foxp3+ regulatory T cells, which can inhibit proliferation of alloreactive T cells both in vitro and in vivo. This process occurs independently of B7.1 costimulation but is dependent on programmed death ligand 1 (B7-H1). This finding may have important implications for tolerance induction in transplantation.
Nature Medicine | 2014
Peter Liehl; Vanessa Zuzarte-Luis; Jennie Chan; Thomas Zillinger; Fernanda G. Baptista; Daniel Carapau; Madlen Konert; Kirsten K. Hanson; Celine Carret; Caroline Lassnig; Mathias Müller; Ulrich Kalinke; Mohsan Saeed; Angelo Ferreira Chora; Douglas T. Golenbock; Birgit Strobl; Miguel Prudêncio; Luis Pedro Coelho; Stefan H. I. Kappe; Giulio Superti-Furga; Andreas Pichlmair; Ana M. Vigário; Charles M. Rice; Katherine A. Fitzgerald; Winfried Barchet; Maria M. Mota
Before they infect red blood cells and cause malaria, Plasmodium parasites undergo an obligate and clinically silent expansion phase in the liver that is supposedly undetected by the host. Here, we demonstrate the engagement of a type I interferon (IFN) response during Plasmodium replication in the liver. We identified Plasmodium RNA as a previously unrecognized pathogen-associated molecular pattern (PAMP) capable of activating a type I IFN response via the cytosolic pattern recognition receptor Mda5. This response, initiated by liver-resident cells through the adaptor molecule for cytosolic RNA sensors, Mavs, and the transcription factors Irf3 and Irf7, is propagated by hepatocytes in an interferon-α/β receptor–dependent manner. This signaling pathway is critical for immune cell–mediated host resistance to liver-stage Plasmodium infection, which we find can be primed with other PAMPs, including hepatitis C virus RNA. Together, our results show that the liver has sensor mechanisms for Plasmodium that mediate a functional antiparasite response driven by type I IFN.